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Abstract: The package NLControl, developed in the Institute of Cybernetics at
Tallinn University of Technology within Mathematica environment, has been made
partially available over the internet using webMathematica tools. The package consists
of functions that assist the solution of different modeling, analysis and synthesis
problems for nonlinear control systems, described either by state or by input-output
equations. This paper focuses on describing the webMathematica-based tools for
continuous-time nonlinear control systems.

Keywords: webmathematica, symbolic computation, nonlinear control systems,
linear algebraic framework.

1. INTRODUCTION

The differential algebraic methods, introduced by
Fliess (1986) into the studies of nonlinear con-
trol theory, provide deep tools to address vari-
ous nonlinear control problems. These methods
have been supplemented by the related approach,
based on the vector spaces of differential one-
forms over suitable differential fields, associated
with nonlinear control systems Conte et al. (2007).
The latter approach, working with system tan-
gent linearized equations, allows to simplify the
solutions of many problems. The tools based on
differential one-forms and the related methods,
based on the theory of the skew polynomial rings,
are characterized by their inherent simplicity and
strong similarity to their linear counterparts. The
latter makes these tools to be a natural choice in
teaching engineering courses in nonlinear control
and in practical applications.

Since the solutions of nonlinear control problems
require a huge amount of symbolic computations,
additional assistance is provided by the nonlin-
ear control system software package NLControl

Kotta and Tõnso (1999 2003), developed in the
Institute of Cybernetics at Tallinn University of
Technology. The package is based on algebraic
methods of differential one-forms and skew poly-
nomials, and is developed within (symbolic) soft-
ware system Mathematica. This package provides
basic tools for modeling, analysis and synthesis
both for discrete- and continuous-time nonlinear
systems. The reason for developing our own pack-
age is that nonlinear control systems, unlike their
linear counterparts, practically miss a support of
professional software products. For example, both
Matlab Control System Toolbox and Mathemat-
ica Control System Professional Suite are appli-
cable only for linear systems. Some custom-made
packages based on symbolic computations for non-
linear control systems have been developed, see
for example Kaddouri et al. (2006); de Jager
(1995); Rothfuß and Zeitz (1996); Rodrigues-
Millan (2001); Ondera (2008), but their distribu-
tion is extremely limited and only the last of them
implements the methods based on algebraic tools
and skew polynomial rings.
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The functions from the package NLControl can-
not be used outside of Mathematica environment.
The main purpose of this paper is to introduce
and describe a webMathematica-based applica-
tion, developed by us, that allows the most impor-
tant functions from NLControl make available via
the world-wide-web, in such a way that no other
software except for an internet browser needs to
be installed in a computer to use these tools.
This allows these tools to be applied in graduate
courses as well as to make them available to a
wider control community and to engineers. The
other web-based tool for nonlinear control system
is described in Ondera and Huba (2006). The
authors are not aware of any other web implemen-
tations related to symbolic methods for nonlinear
control systems. However, there exist numerous
applications of webMathematica in control edu-
cation, see for example Kujan et al. (2005), but
practically all these tools are dedicated to linear
systems. The second purpose of the paper is to
compare our tools with those described in Ondera
and Huba (2006). Because of space limitations, in
this paper we focus only on the continuous-time
case.

The paper is organized as follows. Section 2 gives
a short overview of algebraic approach based on
differential forms. Section 3 gives a overview of
those aspects of webMathematica, necessary for
our application, including technical details about
webMathematica server technology. Section 4 de-
scribes functions, implemented in our webMathe-
matica website together with numerous examples.
In Section 5 we give a short overview of the file
structure of our site and make a comparison with
the other web-based tools for nonlinear control
systems. The next section concludes the paper
and after that we have an Appendix, containing a
source code sample of the website.

The developed site is available at
http://webmathematica.cc.ioc.ee/
webmathematica/NLControl.

2. ALGEBRAIC TOOLS BASED ON
DIFFERENTIAL FORMS

Nonlinear control systems can be, in general,
described in many different ways. In this paper
we consider three of them. First, the system can
be described by state equations

ẋ = f(x, u)
y = h(x), (1)

where u ∈ U ⊂ IRm is the input, y ∈ Y ⊂ IRp

is the output, x ∈ X, an open subset of IRn, is
the state, f : X × U → X and h : X → Y are
real analytic functions. Alternatively, the control

system may be described by the set of higher
order input-output (i/o) differential equations re-
lating the inputs uj , j = 1 . . . ,m, the outputs
yi, i = 1, . . . , p, and a finite number of their time
derivatives,

y
(ni)
i = ϕi(yl, . . . , y

(nil−1)
l , uk, . . . , u

(αik)
k ,

l = 1, . . . , p, k = 1, . . . ,m),
i = 1, . . . , p

(2)

where ϕ = [ϕ1, ..., ϕp]T is a real analytic function,
αik, nil and ni are the integer valued structural
parameters of the system, satisfying the condi-
tions αik < ni, nil < min(ni, nl) and n1 + ... +
np = n.

Below we will give a short overview of the al-
gebraic approach based on differential one-forms.
We will use the notations from Conte et al. (2007).
One can associate with system (1) the field K of
meromorphic functions in a finite number of inde-
pendent system variables {x, u(k), k ≥ 0}. Over
the field K one can define a differential vector
space E := spanK{dϕ | ϕ ∈ K} spanned by the
differentials of the elements of K. The elements of
E are called differential one-forms. The derivative
operator s in K induces a derivative operator
s : E → E by

∑
i aidϕi →

∑
i said(ϕi) +

∑
i aid(sϕi),

where ai, ϕi ∈ K. An one-form ω ∈ E is called
exact if dω = 0, and closed if dω∧ω = 0 where by
∧ is denoted the wedge product. The subspace of
one-forms in E is called completely integrable if it
admits the basis which consists only of closed one-
forms. The relative degree r of a one-form ω ∈ E
is defined to be the least integer such that Srω 6∈
spanK{dx}. If such an integer does not exist, we
set r = ∞. The relative degree is the number
of times one has to apply the derivative operator
to make the one-form explicitly dependent on the
input.

The differential fieldK and the derivative operator
s induce a ring of left polynomials in the derivative
operator s, denoted by K[s]. A left polynomial
p(s) ∈ K[s] is written as

p(s) = aks
k + ak−1s

k−1 + ...+ a1s+ a0,

where ai ∈ K, for 0 ≤ i ≤ k. Each polynomial
p(s) ∈ K[s] is a mapping of E into itself. An
element a ∈ K does not commute with the
derivative operator s, i. e. a · s 6= s · a. Since the
multiplication of s and an element a ∈ K is not
commutative and can be defined by the following
rule

s · a = a · s+ ȧ,

the ring K[s] thus defined is a non-commutative
skew polynomial ring and is proved to be a (left)
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Ore ring. That is, the polynomials from K[s]
satisfy the left Ore condition: for all non-zero
a, b ∈ K[s], there exist non-zero α, β ∈ K[s] such
that αb = βa.

The i/o equations (2) may be alternatively repre-
sented as Kotta et al. (2006) :

P (s)dy = Q(s)du (3)

where P (s) and Q(s) are p × p and p × m-
dimensional matrices respectively, whose elements
pij(s), qij(s) ∈ K[s]:

pil(s) = sni −
nil∑

j=0

∂ϕi

∂y
(j)
l

sj

qik(s) =
αik∑

r=0

∂ϕi

∂u
(r)
k

sr

and dy = [dy1, . . . ,dyp]T , du = [du1, . . . ,dum]T .
The equation (3) is obtained from (2) by applying
the differential operation to it and using the
notations dy(j)

l = sjdyl, du(r)
k = srduk.

3. WEBMATHEMATICA

In this section we will give a short overview of
webMathematica technology and features related
to our website. In webMathematica server Math-
ematica kernel is running which is taking requests
inserted by users from the webpage, calculating
the results and sending them back to the webpage.

Our website (or user interface) uses standard web
graphical user interface elements, such as text
fields and check boxes. WebMathematica allows
a site to deliver HTML pages to which have been
added Mathematica commands and uses the re-
quest/response standard, followed by web servers.
In our website request is entered into text fields
and response can be in HTML, image or Mathe-
matica notebook form. The request/response pro-
cess is the following:

(1) Browser sends a request to webMathematica
server. Request includes variables and their
symbolic values entered from webpage.

(2) WebMathematica’s kernel manager acquires
Mathematica kernel. Variables and symbolic
values are sent to this kernel.

(3) Mathematica kernel is initialized with input
(request) parameters, it carries out the calcu-
lations, and returns the result to the server.

(4) The response is sent to the browser.
(5) WebMathematica server returns result to

browser.

Requests are sent to the server with webMathe-
matica webpages that are based on two standard
Java technologies: Java Servlet and JavaServer

Pages (JSP). Servlets are special Java programs
that run in a Java-enabled web server, which is
typically called a ”servlet container”. JSPs use a
special library of tags that work with Mathemat-
ica. This library of tags is called the MSP Taglib.
In our site we use also JavaScript and Java. We use
JavaScript for opening and closing windows and
communicating between windows and Java for
calculating random inputs to generate examples.

There are many different combinations of hard-
ware and operating systems that support web-
Mathematica components. Before one starts to in-
stall webMathematica, one has to install Java and
a servlet container. We are using Linux operating
system and Tomcat as a web container.

4. IMPLEMENTED FUNCTIONS

By now, we have implemented 11 different func-
tions for continuous-time nonlinear control sys-
tems from NLControl package into webMathemat-
ica website. There are 6 and 5 pages for systems,
described by state and i/o equations, respectively.
Most chosen functions are based on subspaces Hk
Conte et al. (2007) and solve different modeling,
analysis and synthesis problems.

Note that the tools of NLControl are not designed
for approximate calculations. Therefore, all real
(floating-point) numbers are transformed into ra-
tional numbers. Before printing the result, the
rational numbers are transformed back to real
numbers (keeping the accuracy of the input) for
better overview. User interface is interconnected
with help system, that provides a detailed expla-
nation describing the applied methods behind the
functions together with numerous typical exam-
ples.

User input data (i. e. system equations, input, out-
put and state variables) validation has been im-
plemented in the user interface. The results of the
functions (together with the applied equations)
can be given either in form of raster graphics
image (gif file), html table or pure Mathematica
output. Raster graphics image allows to print the
mathematical experssions in traditional form, but
textual forms are better for copying and pasting
the result into other applications, LATEX docu-
ments for instance. Pure Mathematica output al-
lows to inspect the result generated by NLControl
without any formatting functions applied. This
option is necessary for developers as the best way
to find the reasons of possible errors on the page.

The implemented functions can be divided into
several subgroups. First, there are assistant func-
tions, that do not solve any control problems. The
first (SequenceHk) computes sequence of Hk sub-
spaces that is a necessary building block of major-
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ity of other functions. The other (OrePolynomials)
is rather a collection functions which allow to
perform the basic operations with Ore polyno-
mials. The functions from the second group per-
form the transformations between different system
descriptions (Realization, ClassicStateToIO,
IOToPolynomials and Reduction). The functions
from the third group check the system properties
(Accessibility) and (ObservabilityFiltration).
Finally, the last group consists by now only of one
function FeedbackLinearization.

4.1 Assistant functions

Some of the assistant functions are made available
on the website to allow the deeper study of the
control system. The access to assistant functions
may be useful, if the primary function, supposed
to solve a control problem, fails on some reason.
Assistant functions allow to inquire the reasons of
failure and sometimes even solve the problem.

SequenceHk. The subspace Hk (for k ≥ 0)
contains the one-forms with relative degree equal
to at least k and is defined by

H0 = spanK{dx, du}
Hk = {ω ∈ Hk−1 | ω̇ ∈ Hk−1}, k ≥ 1. (4)

Computing the sequence of subspaces Hk is nec-
essary for several purposes. First, we need this
sequence for checking realizability property and
for finding the classical state space realization of
the input-output equation (Realization). Sec-
ond, it is also necessary for checking if the system
is accessible or not and in case it is not, to find the
non-accessible subspace and decompose the sys-
tem into accessible and non-accessible subsystems
(Accessibility). Moreover, this sequence is nec-
essary to check if the system is static state feed-
back linearizable and for finding the state coordi-
nate transformation (FeedbackLinearization).

The function SequenceHk computes first N ele-
ments in the sequence of subspaces Hk, associ-
ated either to the state equations (1) or to the
input-output equations (2), where N is a positive
integer, specified by the user. It is also possible to
integrate the computed one-forms by checking a
corresponding radio button.

Example 1. Consider the system

y(3) = yu+ ÿü. (5)

Compute the sequence Hk and integrate the sub-
spaces. To save the space, limit the task to
4 first elements of the sequence. The function
SequenceHk returns:

H1 = spanK{dy,dẏ,dÿ,du,du̇,dü}
H2 = spanK{du̇,du,dÿ,dẏ,dy}
H3 = spanK{dy,dẏ,dÿ + ÿdu̇,du}
H4 = spanK{dy,dẏ − ÿdu,dÿ + uydu− ÿdu̇}

The integrated one-forms are:

H1 : {y, ẏ, ÿ, u, u̇, ü}
H2 : {y, u̇, ÿ, u, u̇}
H3 : {y, ẏ, u, e−u̇ÿ}
H4 : The system of one-forms is not integrable.

Ore polynomials. In order to implement func-
tions based on the polynomial methods, for ex-
ample Reduction, one needs basic tools for work-
ing with Ore polynomials. In Mathematica, un-
like Maple, there are no built-in packages ded-
icated to Ore polynomials. An important point
to emphasize is that the basic operations with
Ore polynomials have to be performed modulo
system equations (2). Whenever the expression
y
(ni)
i appears in computations, it should be al-

ways replaced by ϕi(·) from equations (2). The
higher order time derivatives y(ri)

i , ri > ni require
repeated replacements, for example y(ni+1)

i should
be at first substituted by sϕi(·) and then each
y
(ni)
i in the result given by ϕi(·).

The page Ore polynomials contains a collection
of functions, which operate with polynomials from
the Ore ring. It is possible to complete left and
right division, find left and right greatest common
divisor, left and right common multiple, etc.

Example 2. Consider the polynomials

p(s) = us2 + 1
q(s) = s+ ẏ.

The operation of left division finds the left quo-
tient γ(s) and remainder r(s) such that p(s) =
q(s)γ(s) + r(s):

γ(s) = us+ (−u̇− uẏ)
r(s) = (1 + 2u̇ẏ + ü+ u(ẏ2 + ÿ))

4.2 Transformations between different system descriptions

In this subsection, the functions are described
that allow to transform one system description
into another. First, ClassicStateToIO finds the
i/o equations (2) from the state equations (1).
Second, the function Realization checks if the
i/o equations (2) can be transformed into the state
space form, and finds the state equations, if possi-
ble. The function IOToPolynomials calculates the
matrices P (s) and Q(s) in (3), given the input-
output equations (2). The function Reduction
checks if the i/o equations (2) can be reduced and
finds the minimal equivalent system description.
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Reduction. Function Reduction determines whether
the system described by i/o equations (2) is ir-
reducible or not, and if not, finds the reduced
set of i/o equations. A nonlinear control system
described by equations (2) is irreducible iff the
greatest common left divisor GL(s) of polynomial
matrices P (s) and Q(s) in (3) is a unimodular
matrix (i. e. polynomial matrix with polynomial
inverse) Kotta et al. (2006). In case of the non-
unimodular GL(s), equation (3) may be rewritten
as

GL(s)[P̃ (s)dy(t)− Q̃(s)du(t)] = 0

and the reduced system equations can be found by
integrating the one-forms in the brackets, perhaps
after multiplying by the integrating factors.

Example 3. Consider the system

y
(3)
1 = 6u1u2 − 4u̇1u̇2 + 3ẏ1 − 2u2ü1

−2u1ü2

ÿ2 = −3u2 + 2u1u2 − y1u̇2 + ẏ1.

(6)

Reduction gives

2u1u2 + ẏ1 = 0
3u2 + y1u̇2 + ÿ2 = 0. (7)

Realization. The realization problem is to con-
struct the state equations (1) of order n = n1 +
...+np from the set of i/o equations (2), if possible.
Note that unlike the linear case, the state-space
realization does not exist for every nonlinear i/o
model (2). The necessary and sufficient realizabil-
ity conditions in Conte et al. (2007) require that
the subspaces Hk, associated to i/o equation (2),
for 1 ≤ k ≤ α + 2 are completely integrable. The
state coordinates can be found by integrating the
basis one-forms of Hα+2.

Function Realization determines whether the
i/o equations (2) can be transformed into the
state-space form and in case of the positive answer
finds the state equations.

Example 4. Consider the system (7). The func-
tion Realization returns classical state equa-
tions:

ẋ1 = −2u1u2

ẋ2 = −u2x1 + x3

ẋ3 = −u2

(8)

x1 = y1
x2 = y2
x3 = u2y1 + ẏ2

Example 5. Consider the system (5). The func-
tion Realization returns the text ”Classical state
space form does not exist for the system”.

ClassicStateToIO. This function transforms clas-
sic state equations (1) into i/o equations (2).

Example 6. Transform the system (8) back into
form of i/o equations. The result

ẏ1 = −2u1u2

3u2 + y1u̇2 + ÿ2 = 0

is the same as equations (7), but generally the
transformation from i/o equations to classical
state equations and then back to i/o equations
does not necessarily lead to the same i/o equa-
tions.

IOToPolynomials. This function computes the
p × p and p × m-dimensional matrices P (s) and
Q(s) in (3), given the input-output equations (2).

4.3 Checking the system properties

In this subsection the functions Accessibility
and ObservabilityFiltration are described that
allow to check the accessibility (controllability)
and observability properties of the system, respec-
tively.

Accessibility. Accessibility is the structural prop-
erty of the nonlinear system that in the linear
case reduces to the controllability property. The
system (1) is said to be accessible if there does
not exist any non-zero autonomous variable for
(1) in K. Note that the autonomous variable of the
system is a variable, not influenced by control, and
therefore, cannot be changed by controller. The
necessary and sufficient condition for accessibility
is H∞ = {0} Conte et al. (2007).

In case the system is not accessible, it can be de-
composed into accessible and non-accessible sub-
systems. Note that H∞ is a non-accessible sub-
space, and because of its complete integrability, it
has an integrable basis H∞ = spanK{dζ1, ...,dζr}
Conte et al. (2007). Since H∞ is invariant under
applying derivative operator,

ζ̇1 = f1(ζ1, ..., ζr),
...
ζ̇r = fr(ζ1, ..., ζr).

The accessible subspace Xa := X/H∞ such that
Xa ⊕ H∞ = X has also an integrable basis
spanK{dζr+1, ...,dζn}. Therefore, we have

ζ̇r+1 = fr+1(ζ, u),
...

ζ̇n = fn(ζ, u).

Observability filtration. Conte et al. (2007)
The system (1) is said to be observable, if
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rankK
∂Hn−1

∂x
= n, (9)

where Hn−1 =
(
h(x), sh(x), . . . , sn−1h(x)

)T . De-
fine the difference vector spaces Yk, Y and U for
system (1) as follows

Yk = spanK{dy, 0 ≤ t ≤ k},
Y = spanK{dy, t ≥ 0},
U = spanK{du, t ≥ 0}.

To define the observable subspace, introduce the
sequence of subspaces, called the observability
filtration

0 ⊂ O0 ⊂ O1 . . . ⊂ Ok ⊂ . . . , (10)

where Ok := X ∩(Yk+U). The subspace X ∩(Y+
U) is called the observable space of the system
(1) and can be computed as the limit O∞ of the
observability filtration (10), O∞ = X ∩ (Y + U).
The following statements are equivalent: (i) the
system is observable, (ii) the condition (9) is sat-
isfied, and (iii) O∞ = X . In order to decompose
the system (1) into the observable and unobserv-
able subsystems, one has to find an exact basis
{dζ1, . . . ,dζr}. Complete the set {dζ1, . . . ,dζr} to
a basis {dζ1, . . . ,dζr,dζr+1, . . . ,dζn} of X . Then,
in the coordinates ζ, the system (1) reads as

ζ̇1 = f1(ζ1, . . . , ζr, u)
...

ζ̇r = fr(ζ1, . . . , ζr, u)
ζ̇r+1 = fr+1(ζ, u)

...
ζ̇n = fn(ζ, u)
y = h(ζ1, . . . , ζr).

Example 7. Consider the system

ẋ1 = −ux1 + x3

ẋ2 = u2 + x2

ẋ3 = ux3 + x1

y = x1 + x2.

Observability filtration gives

O1 = spanK{dx1 + dx2}
O2 = spanK{(−1− u)dx1 + dx3,dx1 + dx2)}
O3 = spanK{dx3,dx2,dx1}
O4 = spanK{dx3,dx2,dx1}.

4.4 Feedback linearization

System (1) is said to be static state feedback
linearizable if there exist a state diffeomorphism

ξ = Φ(x)

and a regular static state feedback of the form

u = α(x, v),

with rankK[∂α(·)/∂v] = m, such that in the new
coordinates the compensated system equations
are in the form

ξ̇i1 = ξi2
...

ξ̇iki−1 = ξiki

ξ̇iki
= vi, i = 1, ...,m.

For linearizability conditions we need to define an
integer k∗ for sequence Hk. There exist an integer
k∗ ≤ n such that, for 0 ≤ k ≤ k∗, Hk+1 ⊂ Hk
but Hk+1 6= Hk and Hk∗+1 = Hk∗+2 = . . . =
H∞. The necessary and sufficient conditions for
feedback linearizability are:

(1) H∞ = {0},
(2) Hk is completely integrable for 1 ≤ k ≤ k∗.

Not every accessible system can be linearized by
static state feedback. The function Linearization
checks whether this is possible and in the case
of affirmative answer finds the state coordinate
change, the feedback and the linear closed-loop
equations.

Example 8. Consider the system

ẋ1 = −x1(u+ ux1x2 − x2x3)
x3

ẋ2 =
1
x1
− x2

2

ẋ3 = u+
x3

1 + x1x2
.

The function Linearization gives

ż1 = z2
ż2 = z3
ż3 = v

z1 = −1 + z1z2
x1x3

z2 =
x2(1 + x1x2)

x1x3

z3 =
1− 2x2

1x
3
2 + x1x2 − 2x1x

2
2

x2
1x3

v =
uz4

1 − 6z3
2 + 6z1z2z3
z2
1

.

5. ADDITIONAL COMMENTS

5.1 Structure of the website

NLControl website is a project under develop-
ment, we are adding new functions and reorganiz-
ing old pages. What is described here is the state
of the art in January, 2009. The structure of the
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website is very simple. For every function there is
one jsp file which allows to enter the input data us-
ing html forms and the other jsp file which shows
the result generated by webMathematica. These
two files are similar for all functions, with some
modifications. The source code of the webpages
providing access to the function Realization is
given in Appendix. The simplicity of the file struc-
ture is also its weakness since it yields a large
number of almost identical files. Moreover, if one
has to make some minor changes, one may need to
edit all these files. Our future aim is to reorganize
the site in a more sophisticated way, such that it
would be easier to administer, for example add
new functions, update Mathematica code blocks
or change layout.

5.2 Comparison with other web-based tools

Besides the fact that the problems handled are
different, that is the tools described in Ondera
and Huba (2006) are dedicated solely to the exact
static state feedback linearization problem, there
are other points to be mentioned. As far as lin-
earization problem is concerned, the web-tools in
Ondera and Huba (2006) allow more than our
function Linearization, namely the user may
additionally submit the desired closed-loop poles
of a pole-placement controller and to perform a
simulation of the resulting closed-loop system.

There is also a difference in chosen technology.
The web-tools in Ondera and Huba (2006) are
based on Matlab and its Symbolic Math Toolbox.
This toolbox is a Maple 8 symbolic kernel that
was bought from Maplesoft and implemented into
Matlab by the MathWorks. The different plat-
form also implies a different internet implemen-
tation. In Ondera and Huba (2006) tools are web-
accessible via Matlab Web Server that is based
on CGI technology, whereas webMathematica is
Java and JavaScript-based. Both web-tools relieve
users from installing Mathematica or Matlab on
their computers and help to make programs avail-
able to everyone without seeing program code.

CONCLUSIONS

This paper describes how the symbolic computa-
tion package NLControl, developed within Math-
ematica environment has been made available
over the internet using webMathematica program-
ming features. The website has been tested on
Microsoft Internet Explorer and Mozilla Firefox
web browsers. Our future goal is to implement
more NLControl functions into webMathematica
website, improve the documentation and example
library. Especially, we want to include functions
that allow output feedback linearization and/or

decoupling, construct the transfer function from
the i/o equations (2) or from the state equa-
tions (1), find the discrete-time model from the
continuous-time system equations and solve the
model-matching problem.

APPENDIX

Comments are included in italics. The <msp:al-

locateKernel> tag is used to obtain a Mathemat-
ica kernel for computation, </msp:allocateKernel>

releases the kernel. The tags <msp:evaluate> . . .

</msp:evaluate> contain Mathematica/webMathe-
matica blocks between them.

RealizationCont.jsp - input data file

<%@ page language="java" %>

<%@ taglib uri="/webMathematica-taglib"

prefix="msp" %>

<%@ page import="java.util.Random"%>

heading specifying the languages used in the file.

<script language="javascript">

function openChild(file,window) {

childWindow = open(file,window,’resizable=yes,

scrollbars = yes,

width = 600,

height = 600’);

if (childWindow.opener == null)

childWindow.opener = self;

}

</script>

Javascript function for opening explanation and
examples windows.

<html>

<head>

<title>Realization of the input-output equation

</title>

</head>

<BODY bgcolor="#e9e9e9" text="#123456">

<h1>Realization</h1>

Function Realization determines whether the non-

linear higher order input-output differential

equation can be realized in the classical state-

space form and the if the i/o equation is

realizable, finds the state equations.<br>

Beginning of the html-part, contains a short ex-
planation about the current function.

<A HREF="javascript:openChild(

’RealizationContExplanation.html’,’vin2’)">

read more..</A>

<br><br>

<A HREF="javascript:openChild(’

RealizationExamplesCont.html’,’vin2’)">

Examples</A><br>

Javascript function is called to open pdf docu-
ment explaining the mathematical theory behind
the function and to open examples file containing
more complicated system equations.

<msp:allocateKernel>

<form action="RealizationContResult.jsp"

name="parentForm" method="POST">

Beginning of the html-form
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<%

String examples[][] = { {"{y’’’[t] == y’’[t] u[t]

+ u’[t] y[t] + u[t]}","",""},

{"{y1’’[t] == y1’[t] u2’[t] + u1[t],\n

y2’’[t] == u1[t] + y2[t]}","",""},

};

Random random = new Random();

int randInt = random.nextInt(examples.length);

StringBuffer jexpr_eq = new StringBuffer();

StringBuffer jexpr_Ut = new StringBuffer();

StringBuffer jexpr_Yt = new StringBuffer();

jexpr_eq.append(examples[randInt][0]);

jexpr_Ut.append(examples[randInt][1]);

jexpr_Yt.append(examples[randInt][2]);

%>

Java code which fills system equations’ field with
randomly selected simple equations from above
defined array.

<b>Input-output equation(s): </b>

<br>

<textarea name="eq" rows=4cols=60>

<msp:evaluate>

MSPValue[$$eq,"<%=jexpr_eq%>"]

</msp:evaluate> </textarea>

<br>

<b>Input variables:</b>

<input type="text" name="Ut" size="10"

value="<msp:evaluate>MSPValue[$$Ut,""]

</msp:evaluate>"/>

<br>

By default, all variables starting with "u" and

depending on t are considered as input variables,

e.g. u[t], u1[t], u2[t+1].

<br>

To use different symbols, enter the list,

e.g. {v1[t], v2[t]}

<br><br>

<b>Output variables:</b>

<input type="text" name="Yt" size="10"

value="<msp:evaluate>MSPValue[$$Yt,""]

</msp:evaluate>"/>

<br>

By default, all variables starting with "y" and

depending on t are considered as input variables,

e.g. y[t], y1[t], y2[t+1].

<br>

To use different symbols, enter the list,

e.g. {w1[t], w2[t]}

<br>

Text fields for entering i/o equations and lists of
input and ouput variables.

Choose the output format:

<br>

<input type = "radio" name = "outputformat"

value = "gif" checked>gif picture<br>

<input type = "radio" name = "outputformat"

value = "html">html table<br>

<input type = "radio" name = "outputformat"

value = "mtca">pure Mathematica output<br>

<br>

Leave out argument t to make the result

visually as short as possible:

<br>

<input type = "radio" name = "argumentt"

value = "yes">yes<br>

<input type = "radio" name = "argumentt"

value = "no" checked>no<br>

Radio buttons to specify formatting options.

<br>

<input type = "hidden" name = "systemtype"

value = "cont">

<input type = "submit" name = "submitButton"

value = "Evaluate">

<br><br><br><br>

</form>

</msp:allocateKernel>

</body>

</html>

The hidden field systemtype tells to the result file
that it is a continuous-time system. This allows
to use the same result file for the continuous- and
discrete-time systems.

RealizationResult.jsp - result file

<%@ page language="java" %>

<%@ taglib uri="/webMathematica-taglib"

prefix="msp" %>

<html>

<BODY bgcolor="#e9e9e9" text="#123456">

The data you entered:<br>

<msp:allocateKernel>

<b>Input-output equation(s):</b>

<br><msp:evaluate>$$eq</msp:evaluate>

<br>

<b>Input variables:</b>

<br><msp:evaluate>$$Ut</msp:evaluate>

<br>

<b>Output variables:</b>

<br><msp:evaluate>$$Yt</msp:evaluate>

Prints the equations, entered by the user to allow
him to check the input data.

<br>

<msp:evaluate>

Needs["MSP‘"];

Needs["NLControl‘Core‘"];

Needs["NLControl‘Sequences‘"];

Needs["NLControl‘InputOutput‘"];

Needs["NLControl‘Ore‘"];

Needs["NLControl‘Integration‘"];

Needs["NLControl‘StateTransformations‘"];

Needs["NLControl‘Identifiability‘"];

Needs["NLControl‘Observability‘"];

Needs["NLControl‘Web‘"];

</msp:evaluate>

Loads NLControl package files

<msp:evaluate>

eqs = Null;

Ut = Null;

Yt = Null;

eqs = MSPToExpression[$$eq];

Yt = MSPToExpression[$$Yt];

Ut = MSPToExpression[$$Ut];

Converts the content of the text fields into Math-
ematica expressions.

correctdata = eqs=!= Null;

realizable = False;

If[ correctdata,

If[ Ut === Null,

Ut = DetectVariables[eqs, t, "u*"] ];

If[ Yt === Null,

Yt = DetectVariables[eqs, t, "y*"] ];

type = Switch[ $$systemtype,

"cont", TimeDerivative, "disc", Shift ];
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data = IO[ eqs, Ut, Yt, t, type];

result = TimeConstrained[ Realization[ data,

ToExpression["x"<>ToString[#]][t] &], 30];

timearg = If[$$argumentt==="yes", False, True];

"Your system is:",

(* Else *)

"Uncorrect input data."

]

</msp:evaluate><br><br>

If the entered expressions have correct syntax,
Realization is applied to them

<msp:evaluate>

If[ correctdata,

iWebForm[ data, $$outputformat,

TimeArgument -> timearg]

] (* End If *)

</msp:evaluate><br><br>

Prints the initial i/o equations to screen.

<msp:evaluate>

If[ correctdata,

Switch[ result,

{}, "Classical state space form does not

exist for the system.",

_Realization, "Program is unable to find the

classical state space form for the

system.",

$Aborted, "Time limit 30 seconds exceeded.",

{_StateSpace, _List}, realizable = True;

"Classical state space equations are:"

] (* End Switch *)

] (* End If *)

</msp:evaluate><br><br>

If the classical state equations do not exist, can
not be found or solution takes too much time, the
corresponding messages are printed.

<msp:evaluate>

If[realizable, iWebForm[ result,

$$outputformat, TimeArgument -> timearg]]

</msp:evaluate>

If the classical state equations were found, they
are printed to screen.

</msp:allocateKernel>

</form>

</body>

</html>
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June 9–12, 2009, Štrbské Pleso, Slovakia Le-Fr-5, 006.pdf

633


