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Abstract: There is described new method of PSD controller tuning in this paper. This 
method tunes PSD controller parameters online through the use of genetic algorithm and 
neural model of controlled system in order to control successfully even highly nonlinear 
systems. After method description and some discussion, there is performed comparison 
to one chosen conventional control technique. 
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1 INTRODUCTION 

Artificial neural networks represent effective tool for 
even highly nonlinear systems modeling. However, 
possibilities of neural model usage in process control 
are limited because control techniques in use (mostly 
based on PSD controllers applying) cannot employ 
neural models. 

There are many well-known techniques of PSD con-
trollers tuning. However, all of them suppose linear 
controlled system. The method explained here aims 
to tune PSD controller online. It expects knowledge 
of controlled system neural model and process of 
reference variable over known future finite horizon. 
The method amplifies the basic feedback control loop 
connection illustrated in Fig. 1. Its structure is illu-
strated in Fig. 2. 

 

Fig. 1. Feedback control loop 

 

 

Fig. 2. Feedback control loop with PSD Controller 
Tuning Using Artificial Intelligence Techniques 

So the premise is an availability of controlled system 
neural model and knowledge of reference variable 
process over future horizon N. Then there are chosen 
the parameters of PSD controller repeatedly every 
discrete time instant so that the control response 
computed via the neural model over future horizon is 
optimal (according to chosen performance criterion). 
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2 METHOD DESCRIPTION 

It is clear that the crucial problem is to choose an 
optimization algorithm. The optimization of PSD 
controller parameters has to run repeatedly in every 
single step of sampling interval, which lays great de-
mands on computing time of optimization algorithm. 
Naturally, there is suggested usage of some iterative 
optimization algorithm with only one iteration reali-
zation every time instant. Gradient descent techniques 
seem inconvenient because of neural model usage. 
Neural model is black-box-like model so it is not 
possible to determine gradient descent analytically. 
On the other hand, genetic algorithm (GA - see (Hy-
nek 2008)) appears to be suitable because it does not 
require any particular information about optimization 
problem except of input variables ranges. The other 
indisputable advantage is its operating principle. In 
each iteration, GA explores not only one value of 
input variables but whole set of variables (one gener-
ation of individual solutions), which lowers signifi-
cantly troubles with initial parameters random choice.  

The control method described here does not require 
any special form of PSD controller. Most widely 
known form of PSD controller 

 
)1()2(

)1()()(

2

10

−+−⋅+
+−⋅+⋅=

kukeq

keqkeqku
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where u(k) - manipulated variable 

 e(k) - control error 

 q0, q1, q2 - PSD controller parameters 

suits quite well. However, controller behaviour de-
pendence on variation of parameters q0, q1, q2 is not 
completely clear and some parameters can get both 
positive and negative value. In term of GA using, it 
seems more convenient to use that form of PSD con-
troller whose values of parameters are at least unilat-
erally bounded. It is realized in the PSD controller of 
form (Bobál et al. 1999) 

 )()()()( kukukuku DIP ++=  (2) 

where  )()( 0 keqkuP ⋅′=  

 )()1()( 1 keqkuku II ⋅′+−=  

 [ ])1()()( 2 −−⋅′= kekeqkuD  

It is obvious that the form of PSD controller de-
scribed by Eq. (2) is formally similar to continuous-
action PID controller hence all the parameters q’0, 
q’1, q’2 will be positive for controlled systems with 
positive gain. This information will improve accuracy 
of GA results. 

3 ALGORITHM RESUMPTION 

Whole algorithm of described control method is 
compiled in following points: 

1. Create dynamical neural model of controlled 
system 

2. Choose future horizon length N 

3. Choose GA parameters (number of individ-
ual solutions in one generation, length of 
chromosome, conversion between phenotype 
and PSD controller parameters definition) 
and their initial values 

4. Measure controlled variable y(k) 

5. Perform one iteration of GA (based on the 
knowledge of controlled variable y(k), 
process of its reference w(k) till w(k+N-1) 
and neural model of controlled system) 

a) perform control simulation with PSD 
controller and the neural model over fu-
ture horizon N and evaluate cost func-
tion (fitness function in GA nomencla-
ture) for all the individual solutions 
from current generation 

b) Determine and save best solution (elit-
ism) 

c) Select individual solutions for next gen-
eration breeding through their fitness 
function values (tournament selection, 
roulette wheel selection, …) 

d) Apply cross-over (e.g. one point cross-
over with random point of cross-over) 

e) Apply mutation with dynamically 
changing value of probability (mutation 
probability should rise with lowering se-
lection pressure) 

f) Evaluate fitness functions of offspring 
(see step a)) and replace the poorest 
offspring solution by the best solution 
obtained from step b) 

g) Choose the best individual solution 
from next generation 

6. Evaluate manipulated variable u(k) with 
PSD controller determined by best individu-
al solution obtained in step 5g)  

7. k = k +1, go to step 4 

There will be described few remarks in next sen-
tences.  

Future horizon length N is important parameter of the 
algorithm. There are no exact rules how to choose it. 
Too short horizon does not provide sufficient data to 
GA. However, too long one brings data so distant 
from the current state that this data should not influ-
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ence next controller output value. It has to be men-
tioned that long future horizon length causes long 
computing time (computing time is one of key 
troubles). 

There is similar situation in choice of number of indi-
vidual solutions in each generation and in choice of 
length of chromosome. Their rising leads to better 
control performance but it extends the computing 
time immoderately. 

Mutation is key part of GA in this case. The only 
mutation can ensure sufficient diversity of individual 
solutions in population. Optimization works online so 
fitness function parameters are changed in each itera-
tion step. Thus, solutions, which seem acceptable in 
one iteration step, can lead up to unstable control 
response in another iteration step. Mutation has to 
ensure sufficient diversity of individual solutions so 
that each generation contains solution leading at least 
to stable control performance. 

Suitable definition of cost function (fitness function) 
is 
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(3) 

where  )1()()( −−=∆ iuiuiu  

 e(i) -  control error w(i) - y(i) 

 h1 -  function parameter influencing ma-
nipulated variable differences 

 h2 -  function parameter influencing the 
state on the end of future horizon 

 N - length of future horizon 

 w(i) - reference variable 

Eventually, Most of real controlled systems have con-
strained inputs. It is useful to include that limitation 
to control simulation (step 5a)) in order to influence 
PSD controller parameters optimization. 

4 EXAMPLE OF NONLINEAR SYSTEM 
CONTROL 

Demonstrative nonlinear controlled system is de-
scribed by the function 
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(4) 

For apprehension, there is shown response of system 
(4) to sum of delayed step functions in Fig. 3. 

 

Fig. 3. System response to sum of delayed step func-
tions 

Control design was made according to paragraph 3. 

First, there was designed dynamical neural model of 
controlled system (see (Taufer et al. 2008)) in form 
of equation 

 [ ])2(),1(),2(ˆ),1(ˆNET)(ˆ −−−−= kukukykyky (5) 

Then, there were chosen following parameters based 
on compromise between control performance and 
computing time: 

Future horizon length N 50 

Number of individual solutions 14 

Chromosome length 36 binary values 

Mutation probability 10-4 for high selec-
tion pressure 

 0.3 for low selec-
tion pressure 

Low selection pressure was defined for cases when 
the fitness function value of best individual solution 
was at the most five percent more favourable than 
average of all fitness function values in current gen-
eration. 

As there were optimized three parameters of PSD 
controller (2), there had to be defined conversion 
formula between phenotype of each solution and 
mentioned three parameters. Several simulations 
proved following formula to be sufficient: 
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where  ch  - vector of values included in each 

solution chromosome 

Cost function was defined by Eq. (3) whereas           
h1 = 0.4 and h2 = 0.2. 
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Fig. 4. Control response 

From Eqs. (6), it is obvious that PSD controller pa-
rameters can get values from interval (0; 1.02375) 
with uncertainty of about 2.5·10-4. 

It was simulated control response (Fig. 4.) for men-
tioned values, random initial generation of individual 
solutions and chosen process of reference variable w. 
Manipulated variable u(k) was constrained on interval 
<0; 5>. 

Retrieved control response was compared to response 
gained by common control technique. It was chosen 
LQ control technique derived from Algebraic Control 
Theory which is described in (Drábek et al. 1987). 
This technique tuned controller with two degrees of 
freedom and integral element according to the crite-
rion 
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The technique required linear ARX model of con-
trolled system. Second order ARX model was ob-
tained by Least Mean Square Identification Tech-
nique with the same data which was used to neural 
model design. That ARX model was updated online 
with Recurrent Least Mean Square Identification 
Technique with forgetting factor α = 0.9 (Drábek et 
al. 1987). Through that ARX model, there was built 
controller with two degrees of freedom adaptively 
each time instant k according to criterion (7) with 
parameter h = 10. Final control response on equal 
terms like previous one is figured in Fig. 5. Compari-
son of Fig. 4 and Fig. 5 tells that in this case (and 
many others) PSD Controller Tuning Using Artificial 
Intelligence Techniques provides much better per-
formance than certain conventional method. 

5 CONCLUSIONS 

There is described control method in this paper, 
which employs artificial intelligence techniques.  

 

Fig. 5. Control response with LQ controller 

The method is suitable especially for highly nonlinear 
time-invariant systems control. 

It can utilize manipulated variable limitations in a 
certain manner, which is not quite common feature. 
On the other hand, it requires precise neural model of 
controlled system, which can be difficult to obtain. 
The method is computationally demanding so it is 
rather suitable for systems with longer sample time 
(decimals of seconds and longer according to applied 
computer). There is included significant stochastic 
element in this method due to GA so every other con-
trol response is different from previous one. 

Algorithm itself could be slightly improved before 
being applied. For instance, it seems convenient to 
reduce violent changes of manipulated variable (e.g. 
by low-pass filter). Method can be modified for other 
types of controllers, too. 

In fine, described control technique has abilities to 
control highly nonlinear time-invariant systems which 
had to be controlled by adaptive control techniques 
till this time. However, it is not proper for time-
variant systems control without modifications needed 
to be made. 

ACKNOWLEDGMENTS 

The work has been supported by program of Czech 
Republic MSM 0021627505. This support is very 
gratefully acknowledged. 

6 REFERENCES 

Bobál, V., Böhm, J., Prokop, R. (1999). Praktické 
aspekty samočinně se nastavujících regulátorů: 
algoritmy a implementace. VITIUM, Brno. ISBN 
80-214-1299-2 

Drábek, O., Macháček, J. (1987). Experimentální 
identifikace. VŠChT Pardubice, Pardubice. 

17th International Conference on Process Control 2009
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