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APPROXIMATE MATHEMATICAL MODEL OF A STEAM OVERHEATER  

J. Cvejn* 

* Univerzity of Pardubice, Faculty of Electrical Engineering and Informatics 
e-mail : jan.cvejn@upce.cz 

Abstract: We describe a construction of a mathematical model of a controlled power-
plant steam overheater. The overheater consists of two subsystems that can be identified 
separately – cooling steam by water injection and the heating steam part. The model is 
subsequently to be used in design of a cascade-type control system for regulation of 
outlet temperature of overheated steam. The second subsystem has distributed parame-
ters and for the purposes of control design it has to be simplified. One way of such an 
approximation is proposed in the paper. The procedure of estimation of the model pa-
rameters from measured service data is described in a stand-alone paper in the same 
proceedings. 

Keywords: heat systems, mathematical modeling, system identification, control sys-
tems. 

1 INTRODUCTION 

A practical demand for most steam boilers is keeping 
temperature of overheated steam on a desired level. 
For powerplant boilers there exists an optimal value 
of temperature, for which maximal production gain is 
obtained, because with rising temperature of steam 
there increase both efficiency of the turbine and the 
equipment renewal costs [Karták et al. 1981]. Steam 
is heated in the steam overheater. Outlet steam tem-
perature is influenced by the temperature of steam in 
the input of the overheater, steam flow rate and heat 
input. As usual, only ending part of whole overheater 
is controlled. In principle, regulation can be carried 
out by heat input change, by a change of input tem-
perature by cold water injection or by cooling in a 
surface exchanger. Here the second variant is consid-
ered, which is also the most common case in practice 
(Fig. 1). The cooler is constructed so that a sufficient 
dispersion of water drops that must not come into the 
heating part is achieved. 

From the service data obtained from one of con-
trolled overheaters in the powerplant in Opatovice 
nad Labem (International Power Opatovice, a.s.) it 
was observed that although the temperature is auto-
matically controlled, the variance of 3T  is often sig-
nificantly bigger than the variance of 1T  in the input. 

This behaviour can be caused by strong external in-
fluences, but also by improper settings of the control 
loop parameters. The paper describes a construction   

 

 

 

 

 

 

 

Fig. 1. Control of the temperature of overheated 
steam by cold water injection 

of a mathematical model of the system, which should 
enable enhancements in the control system design.  

Disturbances in effect are the changes of the tem-
perature 1T , the flow rate M and the heat input q. The 
temperature 2T  is easily controllable by the input 
valve control variable z, because at the same time the 
temperature 1T  and the flow rate M are measured. 
However, regulation of the outlet temperature is dif-
ficult, because due to the overheater length a signifi-
cant time delay occurs between input point and the 
output. Therefore, cascade configuration of two con-
trollers is usually used, where inner loop shall com-
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pensate or speed up dynamics of mixing and outer 
loop ensures control of temperature by means of 
change of  2T  (Fig. 2). 

The control loop parameters can be designed on the 
basis of a mathematical model of the controlled 
plant. Obtaining the model structure using mathe-
matical-physical analysis is described below. We 
assume that the model approximate parameter values 
can be obtained by processing measured service data. 
Parameter estimation procedure is described in a 
stand-alone paper published in the same proceedings 
[Cvejn 2009].  

 

 

 

 

 

Fig. 2. Cascade regulation of outlet temperature 

2 MATHEMATICAL MODEL OF THE 
OVERHEATER  

2.1 Model of the cooler  

The subsystem of cooling steam by cold water injec-
tion was modeled by a single capacity dynamic plant. 
Denote V internal volume of the cooler, ρ  density of 
steam, ,p vc c  specific heat capacities of steam and 
water, vT  temperature of cooling water, bT  boiling 
point of water, vC  latent heat of water, pM  flow rate 
of steam before injection and vM  flow rate of cool-
ing water through the control valve. After substitu-
tion into the heat balance we obtain the equation  

        
( )

( ) ( )

2
2 1

2 .

p p p

v v b v p b v

dT
Vc M c T T

dt
M c T T c T T C

ρ = − −

⎡ ⎤− − + − +⎣ ⎦

       (1) 

By expressing linearized deviations from steady state 
we obtain the equation 
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where 1ϑ , 2ϑ  are the changes of temperature in the 
input and the output of the cooler, pξ , vξ  the changes 
of the steam inlet flow and the cooling water flow. In 
eq. (2) symbols 1 2, , vT T M  and pM  denote the 
steady-state values of quantities. For considered 

equipment holds maxv vM M z= , where maxvM  is 
maximal flow rate given by the cooling water pres-
sure and 0, 1z∈  the control variable of the valve. 
For the inlet flow vξ  and overall change of the flow 
rate ξ  holds maxv vM uξ =  and maxp vM uξ ξ= + , 
respectively, where u is the change of the valve con-
trol variable. After substitution into equation (2) we 
obtain  
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p p p p p
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   (3) 

From equation (3) it is possible directly to express 
transfer functions in Laplace transform: 
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where , ,T M zK K K  are the gains corresponding to 
changes of the temperature of inlet steam, the flow 
and the control variable of the valve. sT  is common 
cooling time constant.  

2.2 Model of the steam heater 

We assume that heat input is constant along the over-
heater. Given equipment uses combined way of 
transferring heat – by convection and by radiation. 
By a suitable construction of the overheater it is pos-
sible to achieve that the heat input is only a little de-
pendent on the flow rate [Karták et al. 1981]. Since 
this fact usually has been used in design of over-
heaters, we consider that dependence of the heat 
transfer coefficient on the flow rate can be neglected.  

If we denote x the distance of the point of measuring 
the steam temperature T  from the beginning of the 
heating part, the temperature is besides time also 
dependent on the coordinate x. For the element of 
steam of length 0dx →  it is possible to write the 
balance equation  

   [ ]( ) ( ) ( )t
dTcSdx Mc T x T x dx Odx T T
dt

ρ α= − + + −   (5) 

where S is inner section of the pipe, O inner perime-
ter of the pipe, c heat capacity of steam, ρ  steam 
density, M mass flow rate of steam, α  the coeffi-
cient of the heat transfer between the pipe and steam, 
T and tT  the temperatures of steam and the pipe 
(since the overheater pipe is thin, it is possible to 
consider that its temperature is constant in the sec-
tion). After division by dx  and expressing the 
changes of the temperatures , tϑ ϑ  and the flow rate 
ξ  in linearized form we obtain the partial differential 
equation  

 sF  F
- 

+ 
sRR  

+

- 

wT  3T  2T  
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           ( )t xcS Mc O cT
t x
ϑ ϑρ α ϑ ϑ ξ∂ ∂
+ = − −

∂ ∂
       (6) 

where ( ) /xT x T x= ∂ ∂  does not depend on time.  

For the element of the pipe length we obtain simi-
larly (heat input is independent of x, but is dependent 
on time) 

( )t
t tGc qO O

t
ϑ

α ϑ ϑ
∂

= − −
∂

          (7) 

where G is the weight of unit of the pipe length, tc  
the heat capacity of the pipe material, q the heat input 
taken for unit of the area of inner face of the pipe. 
Since ( , )t x tϑ  is zero for 0t =  and q does not de-
pend on x, after Laplace transform it is possible to 
express the image ( , )t x sΘ  in the form  

1 1( , ) ( ) ( , )
1t

t

x s Q s x s
sτ α

⎡ ⎤Θ = +Θ⎢ ⎥+ ⎣ ⎦
        (8) 

where /( )t tGc Oτ α=  and s is the Laplace operator. 
If we suppose that ( ,0) 0xϑ = , after substitution of 

( , )t x sΘ  into the image of eq. (6) and rearrangement 
we obtain  

  ( , ) 1 ( , ) ( )
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t
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τ
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τ
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where   

            1 1( ) ( ) ( )
1 x

t

OR s Q s T s
Mc s Mτ

= − Ξ
+

.        (10) 

In the case when ( ) 0R s = , the solution of this equa-
tion with respect to x is 

            
1

1( , ) (0, )
t

t

s
cSs O x

Mc sx s e s
τ

ρ α
τ
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For x L= , where L  is the overheater length, we 
obtain   

    1( , ) (0, ) ( ). (0, )
t

d t

s
T s sL s e e s F s s

τ
κ
τ

ϑ

−
− +

⎛ ⎞
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where /dT SL Mρ=  has meaning of transport delay 
and  

OL
Mc
ακ = .          (13) 

Since (0, )tϑ  represents the system input, ( )F sϑ  is 
the transfer function between 2T  and 3T .  

The second part of the transfer function   

1( )
t

t

s
ss e
τ

κ
τ

−
+Γ =           (14) 

cannot be realized by a system with concentrated 
parameters. By inspecting the limit 0s →  we easily 
find out that the corresponding static gain equals 1. 
Step responses corresponding to ( )sΓ  can be found 
in the literature [Čermák et al. 1968]. The transfer 
function ( )F sϑ  can be replaced by a transfer func-
tion of a higher-order plant that can be obtained from 
Taylor expansion [Čermák et al. 1968]. However, 
since the transport delay dT  is assumed to be impor-
tant, in this case we obtain a high-order plant, which 
is not advantageous for further manipulation. There-
fore, we believe that leaving transport delay in the 
transfer function and approximating ( )sΓ  by a ra-
tional function can be a more advantageous ap-
proach. A special choice is Padè approximation, 
which is given by agreement of derivatives in the 
origin. It is known, e.g. [Smith 2006], that for the 
function ze−  Padè approximant of the second order is 
in the form  

             1 / 2
1 / 2

z ze
z

− −
≈

+
.         (15) 

Substituting 
1
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 we obtain   
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κ τ τ
κ τ τ
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If exact agreement of derivatives in the origin is not 
important, by a suitable choice of the constants 1 2,τ τ  
a better approximation can be achieved in the whole 
interval [ )0,∞ . By comparison of frequency re-
sponses it was observed that the model is a good ap-
proximation of ( )sΓ  if 1κ < . See the figures 3 and 4 
for comparison of real and imaginary part of ( )iωΓ  
(solid line) and its Padè approximation (15) (dashed 
line), for 1t sτ =  and 1κ = .  
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Fig. 3. Approximation of ( )iωΓ - real part  
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Fig. 4. Approximation of ( )iωΓ - imaginary part 

For 2κ >  the model is not satisfactory. This is also 
indicated by the time constant 1τ  in (16), which is 
negative for 2κ > . Since κ  plays the role of an ex-
ponent in ( )sΓ , an adequate model in this case is  

          1

2

1
( )

1

p
s

s
s

τ
τ
⎛ ⎞+
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         (17) 

where 1p ≥  is the integer number nearest to κ . 

The conclusion is that we suggest that the transfer 
function be approximately modeled as  

      1
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p
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F s e
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        (18) 

where 1 2,τ τ , dT  are some positive time constants and  
p suitable integer parameter.  

Under a simplifying assumption that ( ) /xT x T x= ∂ ∂  
does not much depend on x we obtain dependence 
between ( )R s  and 3 ( )sϑ  by solving the equation (9) 
with zero initial condition (0, ) 0sΘ = : 
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With regards to (10) the transfer functions between 
q  and 3 ( )sϑ  or ξ  and 3 ( )sϑ , respectively, are after 
rearrangement  
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q
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t
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where   
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The transfer function ( )H s  can be approximately 
replaced if we consider the shape of corresponding 
step response, which has constant derivative of 1 in 
the interval [ ]0, dT , but since the point dt T=  the 
slope decreases and for t →∞  it is zero. Fig. 5 
shows the step response corresponding to the transfer 
function for 1 0.1τ = , 2 1τ = , 2dT =  and 1p =  
(solid line). Approximation with the 1st-order plant in 
the form  

           ( )
1

H

H

K
H s

sτ
≈

+
         (24) 

(dashed line) is obviously possible.  
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Fig. 5. Approximation of ( )H s by a first-order plant 

Since t tO Gc cSα τ ρ= , we assume that it is pos-
sible to omit the time constant /( )t tcS cS Oρ τ ρ α τ+  
in equations (21) and (22). The transfer functions 

( )qF s  and ( )F sξ  then can be obtained in the simpli-
fied form    

         ( )
1

q
q
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K
F s

sτ
≈

+
,  

1
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1
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F s K

sξ ξ
τ
τ

+
≈ −

+
        (25) 

 

 

 

 

 

 

 

 

Fig. 6. Model of heating 
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where , , ,q t HK Kξ τ τ  are positive constants. From 
Fig. 5 it is obvious that Hτ  is not too much different 
from dT . The model of heating is shown in Fig. 6. 
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