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Abstract: Decentralized control of interacting two input two outputs is presented in
this paper. Robust control method is used for controllers design. Cross coupling
circuits are taken as a model uncertainty. Approximation models are obtained
experimentally by two relay autotuning experiments. Controllers are designed on the
basis of common condition for robust stability and robust performance. The method
is verified on the control simulation in the environment MATLAB/Simulink.

Key Words: Decentralized control, robust control, multivariable systems, uncertainty

1. INTRODUCTION

Control of multivariable systems with inner
interactions can be realized either by the set of
single-input  single-output (SISO) decentralized
controllers or by the centralized multiple-input
multiple-output (MIMO) controller. This paper deals
with methods of decentralized control, where the
inner interactions are not suppressed as at
decoupling, but they are taken into account by SISO
controller tuning.

Various methods have been suggested for the tuning
of decentralized controllers and this problem still
pays attention in present control literature. Wide
group of these methods are based on the
determination of system stability limit, given by
ultimate gain K, and ultimate frequency w, (or period
T,) in every loop, as main information for SISO PID
controllers tuning. The systems must be able to
oscillate (must have phase lag greater then 180
degrees).

Courses of iterative experimental methods for

decentralized control  correspond  with  the

mathematical solution of stability conditions. From

this point of view three ways of solutions may be

defined:

- Every loop has different ultimate gain and ultimate
frequency (sequential method).

- All loops have the same ultimate frequencies
(Palmor’s method).

- All loops have the same ultimate gains and the
same ultimate frequencies.

The detail information about principle these methods

and their properties can be found e.g. in Machacek

(2005).

Robust control methods are used for tuning of the
decentralized controllers. Coupling part of model is
taken as an additive uncertainty. Range of possible
uncertainties is given by ultimate values determined
according to Palmor's method. Controllers are
designed on the basis of common condition for
robust stability and robust performance. The method
is first verified for known system model and then for
approximation of model by relay feedback method.

2. ROBUST DECENTRALIZED CONTROL

Systems with two inputs and two outputs (TITO) will
be only considered in this paper (Fig. 1). TITO
system has the transfer function matrix

Gy, (s)
G(s)=

Gnl (S)

G, (s)
: M
G, ()
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Fig. 1. Two-dimensional system with decentralized
controllers

and is controlled by decentralized controller with
diagonal matrix

0

Gcl (S) :|
Gc2 (S)

0 2

Pairing the controlled and manipulated variables is
assumed to be correct. When the multivariable
system is divided into SISO systems, transfer
function of every loop depends not only on the partial
diagonal transfer function, but also on the cross
transfer functions and on the setting of controllers in
rest loops. The controllers design must take this fact
into account.

In case of TITO system the actual transfer function
between the first input and the first output (without
controller G,; and with controller G, connected in
the second loop) has the following form:

G5 (5)Gy (5)G 5 (5)

Gii(s) =Gy (s)—- 1+ Gy ()G, ()

©)

The second transfer function with a controller in the
first loop has similar form:

G5 (5)Gy (5)G ()

Gn(s)=Gpnl(s)— 1+ G ()G, (5)

“

The described method considers diagonal transfer
functions Gy, (s) and G,,(s)as a nominal model and

the second coupling parts in Eqs. (3) and (4) as a
model uncertainty. The set of possible controller
parameters creates family of models, for which a
robust controller is designed. Range of the possible
controllers parameters in Egs. (3) and (4) was derived
on the basis of above mentioned Palmor’s method of
decentralized control — Palmor et al. (1995). At this
method relays are connected in both loops
simultaneously and loops have the same ultimate
frequencies. There are infinite numbers of the
combinations of ultimate values, according to relay
amplitude ratio. Some additional condition must be
chosen, e.g. the same value of product of ultimate
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gain and steady-state gain for both loops. The relay
amplitude ratio can be found, for which the condition
is fulfilled after several iterations. Stability limit for
two-dimensional system is a curve in the K, K,
plane, where points on the axes represent ultimate
gains for system without controllers, i.e. for diagonal
transfer functions G,;(s)and G,,(s). The ultimate

gains and frequencies both transfer functions are also
limit values for controller’s design. Roughly
speaking the ultimate gain of the diagonal transfer
functions may be taken as maximum values for all
possible controllers and difference between ultimate
frequencies gives the range all possible ultimate
frequencies used for controllers design — see Fig. 2.

PID controller is used in both loops. Its transfer
function has following basic form

Gc(s):K(1+L+Tds) (5)
T:s

1

where K is proportional gain, 7; is integral time and
Ty is derivative time. The PID controller parameters
design is realized by Ziegler-Nichols (Z-N)
frequency response method (Ziegler et al. (1942))
from the ultimate values. The classical Z-N formula
gives these recommendations for PID controllers
tuning
K=06K,,

T,=05T,

u>s

T,=0.125T, (6)
2.1 Uncertainty of model

The uncertainty of model was described by additive

perturbation model as it correspondes with
uncertainties in Egs. (3) and (4):
G(s) = G(s) + W (s)A(s) 7)

where a(s) is a perturbed plant transfer function,
G(s) is a nominal plant transfer function, W(s) is a
weighting transfer function and A(s) is a variable
stable transfer function satisfying

[af, <1 ®)
Comparison of Egs. (3) and (4) with Eq. (7) gives

G, (5)Gy1 (5)G, ()

R e v R
_ Gi(5)Gy ()G, (5)
Wy ($)A;(s) = 1+ Gy ()G, (s) 1
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The perturbance weighting functions may be

calculated on condition (8) as

W, (o) = - G, (10)Gy, (i0)G, (iw) Yo (11
1+ Gy, (i0)G,, (i)

W, (i) > - G, ([(0)Gy (iw)G,, (iw) Vo  (12)

1+Gy, (i0)G,, (iw)

For the next calculation must be these weighting
functions approximated by simpler transfer functions.
The perturbances, defined in this way for all possible
contollers in the opposite loop, faciliate the
independent design both controllers.

2.2 Robust stability

The robust stability condition for additive
perturbance model is given (e.g. Skogestad (1995))

IS,, (@)W, (i©)G,, (o) <1 Vo,m=1,2 (13)

where S(s) is sensitivity function

1
1+G,,, ()G, (5)

S (s)

1,2 (14)

This condition reduces range of possible controllers.
2.3 Robust performance

The sensitivity function was taken as indicator of
closed-loop performance. Reciprocal values of
chosen weighting function W,(s) are an upper bound
of the amplitude of sensitivity function

Yo

ISGie)|< (15)

o
W, (o)
where W,(s) is weight, which may be represented by

sIM+og

W,(s)= (16)

s+wpA

where 4 is low frequencies amplitude of S(iw), M is
high frequencies amplitude of S(iw) and wp is
frequency, where amplitude crosses 1 from below.

The common condition for robust stability and robust
performance may be expressed as

S, GOW, (ia))| +[S,, (@)W, (i0)G,, (o) <1 Vo

m

m=1,2 (17)
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2.4 Approximation of model

The exact system model is not usually known and
simple approximating model may be created by relay
experiments. The experiment consists of two parts:
The relay is firstly connected between the first input
and the first output and the responses of transfer
functions G,;(s)and G, (s)are measured and
evaluated. Then relay is transferred between the
second input and the second output and the responses
of transfer functions Gy (s)and Gy, (s)are
investigated. Two models may be derived from every
experiment. Gains of models are determined from
steady states.

The relay with amplitude M in the feedback
generates output signal with amplitude 4 and period
T,, which is near to the sinusoidal. The ultimate gain
can be then calculated as

_4M

K,=—
T A

(18)

and ultimate period 7, is determined from recorded
signals. Ultimate frequency is given by

(19)

Ultimate gains (K,;and K,,,) and ultimate

frequencies (w,,; and ®,,,) of diagonal transfer

functions are the basis for determination of
approximation models G,; and G, (eg
Machacek (1998)):

|Gall (iwull)| ! (20)

Ku] 1
. 1
|Ga22 (iw,2 )| = (21)
u22

arg [Gal UCRT )] =arg [Gazz (o, )] =7 (22)

The models of cross transfer functions are solved
similarly, but gains and frequencies are not ultimate
and shift phases (different from —7z ) are determined
from experiment.

. 1
|G 21 (i,11)] = o (23)
|Gz (0,2)| = (24)
a2
arg[G ) (i0,1))] =~ (25)
arg[G . (i0,2,)]=—15 (26)
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These approximation models are not always accurate,
but their uncertainty is added to model uncertainty.

2.5 Design algorithm

1. Experiment with relay feedback is repead for both
loops. Approximate models are evaluated from
measured data. The ultimate values at the same time
determine set of possible controllers.

2. For given range of possible controllers are
calculated addditive weights and find their
approximation.

3. Shapes of sensitivity functions are designed.

4. Controllers designed from ultimate values
according to Eq. (6) must fulfil the condition of
robust stability and robust performance (17).

3. SIMULATION EXAMPLE

The method was tested in MATLAB/Simulink on
model used in Niederlinski (1971):

0.5

| (0.1s+1)

(0.1s +1)(0.25 +1)* 1 24
(0.55+1)

G(s)

@7

The method was first verified for accurate model.
The course of ultimate gains and the common
ultimate frequency calculated from model (27) are
given in Fig. 2. The range of the ultimate values for
controller parameters design is also:

Kull :0 tO 9.00
o, =433106.83 57"

K
u22 2

I<u11

Fig. 2. Ultimate values of model (27)

20
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Fig. 3. Additive perturbations W,(iw) and their

approximation by weighting function W, (iw)

Weighting functions W, and W, were calculated from
Egs. (11) and (12) for given range of opposite
controllers. The nominal models had modified gains
(multiplied by constant 1.833) in order that the
weighs had smaller values. The weighting functions
were approximated by following transfer functions:

0.2s (s> +125+14)

Wla (S) = )
(57 +s+14)(0.25+1)(s +1)

(s+0.0001)
(0.55+0.1)(0.1s + 1)(0.1s + 1)(0.1s + 1)

WZa (S ) =
Course of weighting functions and their
approximations are shown on Figs. 3 and 4.

The weighing functions for closed loop performance
according to Eq. (15) were designed as transfer

function (16) with following parameters:

p 0.5s+0.15
s+0.0015

20

oL

20L

40|

60

Magnitude [dB]

80L

-100 -

1203 0 " 2
10° 10 10 10
Frequency [rad/s]

Fig. 4. Additive perturbations W, (iw) and their
approximation by weighting function W,, (io)
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Fig. 5 — Closed-loop step responses (y; - blue, y, -
red)

0.1s+0.2

w =
2 ()= 0002

Condition on robust stability and robust performance
(17) are fulfilled for following controller setting:

K] =0.35 Kz =0.24
Tu=Tp=0.65s
Td1: Td2:0.16 N

Closed-loop responses to unit step in the first
reference in time 0 s and in the second one in time
10 s are shown on Fig. 5.

Original Palmor's method gives responses according
to Fig. 6.

3.1 Model approximation

Experiment with relay feedback gives less accurate
values:

Kull =8.33 Kugg =2.13
a1 =6.83 5" Wy =4.62 8"
KulZ =-1.95 Ku21 =3.39
Wu12 =4.62 5" W1 =6.83 5"

Approximate models were chosen in the general form

-0s

G, (s)=———e
(rs+1)

(28)

with the following parameters:

Gains
K11 =0.5 K12:_1
K21 =1 K22 =24
Time constants
T11 = 0.26s T2 = 023s
1 = 022s Ty = 047s
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y1.y2

. . . . I
10 12 14 16 18
time

I I I I
0 2 4 6 8 20

Fig. 6 — Closed-loop step responses — Palmor’s
method (y; - blue, y, - green)

Time delays
011:0.105 011:0.055
021 =0.05s 022 =0.10s

Model parameters were computed by optimization
procedure.

The parameters of controllers as well as the time
responses of approximate models did not too differ
from accurate model.

4. CONCLUSION

Method of decentralized control, based on robust
control method, was described and verified in this
paper. Advantage this method is in shorter
experimental work in comparison with the classic
Palmor’s method, as only two relay experiment is
claimed instead of several iterations. The results of
simulation in environment MATLAB/Simulink
show, that responses are slower, but the responses
overshoots are smaller.
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