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REINFORCEMENT LEARNING PARAMETERIZATION: SOFTMAX
BETWEEN EXPLORATION AND EXPLOATION
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* ENPE CTU, Department of Mathematics, Trojanov#dgha 2, CZ 120 00
e-mail: macek@fjfi.cvut.cz

Abstract. Control in dynamic systems stands for a complek tas
with respect to changing conditions, nonlinear deleacies and
time delays. One of tools of online optimization aaintrol pa-
rameters is reinforcement learning. Present papafsdwith its
application in PID parameters optimization and exa® the
most appropriate parameterization of softmax selecmnecha-
nism.

Keywords: PID control, reinforcement learning, swdix, fluid dynamics.

given setpoint. This setpoint may vary in time. Dy-
namics of the system can be described as follow:

h(t) =V(t)/Ss

1 INTRODUCTION

Large dynamic system control stands for a complex (1)
task. The behavior of the system is complicated by

influences among its parts, positive and negative v(t) =2h(t)g

feedbacks, and time delays. Due the dynamic nature (2)

of control conditions (including failures and dedpia

tion of some functionalities), adaptive systems loan
(3)

operate better than the once set up ones. Neverthe-

less, there are two different tendencies: on om&ha In Equation (1)h(t) is fluid level height at time in-

the system is expected to be controlled smootrly, 0 giantt v is actual fluid volume, ang; is bottom area

the other hand, operating modes are switched grispl gyrface. Equation (2) calculates efflux velocitythwi
and the control is done also at some more abstracpespect to Bernoulli's principle wheegis the stan-

and symbolic level. dard gravity. Finally, equation (3) provides thelev

Current research deals with online learning very in tion of fluid volume in time determined by influx
tensively with respect to various application areas flow V;,and efflux flow given by the efflux velocity
(Silva, Datta, & Bhattachaiyya, 2005). The present and the exhaust area surface.

paper compares some of reinforcement learning

parameterization with respect to a very simple me-

chanical system controlled by a PID controller.sThi

topic was examined also in other works (Anderson, l>'<]

1997), (Hafner, 2007). However, this paper however

brings new results mainly in the parameterizatibn o \

PID controller via a discrete set of values vianfei

forcement learningZ,,

The motivation for reinforcement learning in théPI
control obvious: some parameters are more suitable
for one situation, while other situation is coniedl

by other parameters better. Proposed approach makes
the control more robust and it is able to use #pis /_S;\
proach for cases where the parameters have to be —
determined online.

Vtotal = Vin - Vout = Vin —v-S

2 MODEL DESCRIPTION AND PROBLEM ~ y e

FORMULATION gf'//
\Y

A very simple system was addressed just for demon-
strative purposes. The model consists of a bin arith
inlet at bottom and a tap (Durst, 2008). The ainois
control the water flow so the water level reaches

Figure 1: Simple control system. The aim is to heac
setpointh*by control ofV,,.
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The tap is controlled by a PID controller with thre conflicting requests: first, to decide for the best
parameterKp, K;, and Kp with respect to control  known action, i.e.

errore =h* — h(t) namel
© y a(t) = argmaxg—(q, ...anq} Q. (0)

. t da
Vin = Kp(e) + K; [ e+ Kp—

4

“ On the other hand, it is required to be sure witths
For our purposes, we consider a set of combinationdecision. The information about the system may be
of such parameters (triples). These combinatiotis wi maximized if the action is selected randomly. These
be called actions be denotad &,..., &, WhereN, two aspects call exploitation and exploration. This
is count of actions. Parametdfs, K;, and Ky were problem is discussed with respect to decision ngakin
sampled uniformly from [0 1000] fd€r and [0 1] for in very various dynamic systems, including manage-
K,, andKp. rial sciences (Azoulay-Schwartz, Kraus, &
Wilkenfeld, 2004), (Mom, Tom, Bosch, Frans,
Volberda, & Henk, 2007), (Mom, Tom, Bosch,
Frans, Volberda, & Henk, 2007).

For the simulations, following parameters weredixe
S= 10 nf, S= 1 nf.

3 REINFORCEMENT LEARNING 4 PARAMETERIZED SOFTMAX ACTION

Finding optimal PID controller setting has attralcte SELECTION

many researchers for years and current methods pro: - .
vide sufficient results. The aim of the paper i$ too One of the compromising methods is the softmax

offer new and better wav to set up the PID arame_selection. First, the exponential is applied onoast
Y P P gualities. Afterwards, the action is chosen rangoml
ters, but to analyze a particular aspect of reggor

ment learning wi.th these _\{alues, i.e. the actienis selected with
' this probability:

Reinforcement learning (Alpay(_jin,_ 2004) is a preces exp (Qa,(©)

when an agent takes actions in time, obtains reward pi =

from the system and with respect to it adapts and

attempts to adopt such action selection mechanis

that maximizes its objectives. Let the set of axdio

the agent can take is finite. Many reinforcement

learning problems and methods work with this as- &P (@0q,(®)

sumption, e.g. the well knowkrarmed bandit prob- Pi Z?’:lexp (@Qq;(1) (3)

lem. In our case, the agent will decide whichNgf

PID parameters triples will be chosen. If the parameter = 0O, all actions have the same

. o I probability to be selected. If the parametes a big

;li—rr:]ee ?ng;]ntf OEp;'Cnl,;lZ:éfgnéss p[):]rforzg(?daért]ioc:sigrete positiv_e number, the best kno_vvn action is selected
) ' and vice versa. The problem is how to set the pa-

fg\ll\?;rtgdi (;Fheer:gll?foc:rcen;ecr)\]}f Itla:rglljr:gcarltseguer]esmsgmerametera so the system works optimally. Sometimes,
- €. P y or payofl. » (N8 in literature, parameter temperatufe= 1k is con-

Ewe X X ;
tive aggre.:gated control error fdf time instants is sidered.
calculated:

S exp (Qa; (1) (&

Mrhe softmax action selection can be also parameter-
ized, hence:

¢ The algorithm can be summarized in following steps:
r,(t) = — € ()dr =

; (5) 1. Initialization

= 4Lt=t-T e(T) . .

2. Calculate qualities Q of actions
This aggregated control error expresses how goad th 3. Calculat babiliti ith ('t It
action in given time instant t was. For each action alculate probabilities p with respect to qualities
the qualityQ is considered for all decisions the action

was selected for. There are also other optionstoow 4. Select action a with respect to the probabilities p

calculate the quality; nevertheless, we will catel
5. Measure the aggregated error r

it as follows:
Yatryeata(® 6. Goto2)
Q(®) = |a((r)>=ar|+: (6)
wheree>0 is avoids division by zero and(z) = al 5 THE SIMULATION EXPERIMENTS

is number of decisions when actiarwas selected.

Dynamic decision making grapples with two usually The model was implemented in MATLAB as a sim-
ple function with following inputs: actions (i.€&p,
Ky, Kp triples), temperature, and setpoint evolution in

! The negation is applied so the reward is to be
maximized as usual in reinforcement learning.
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Figure 2: Results of experimer
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time. The experiment is repeated in 100 iteratems more exploration is needed. The testing of optimal
the results are statistically assessable. The ifumct setting of PID controller parameters will be estieda
had two outputs, namely average of mean squarealso in the future with more advanced tools lika-ne
control errors for all iteration and corresponding ral networks. Moreover, the softmax selection proce
standard deviation. dure for negativeQ shall be examined with more
alternatives where th@ is transformed to be positive
before the softmax is applied. Proposed approach
provides a robust control method that shall be com-
pared with other PID tunings in the future and im-
proved.

The experiment was performed for different actions
sets:N; = 2, 10, and 100 and the coefficients were
sampled randomlp from [0 1000],K; andKp from

[0 1]. For each of these sets, different values afe
considered, namely = 0, 0.5, 1 ..., 9.5, 10. For all
experiments, only one setpoint evolution was consid
ered. The time horizon is 1000 seconds. Within this
period the setpoint changes 10 times and is sampled
from [0 100] uniformly.
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