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Abstract: The paper deals with the application of the output tracking method for the
controlled system represented by the DC motor with a flexible shaft. The proposed
output tracking method uses the known results of the state coordinate transformation
and tracking convergence for an integrator chain. The control law is designed in such a
way that ensures the tracking error to converge to zero exponentially. The robustness
of the proposed method is discussed. At last, the simulation results are presented for
the controlled system without uncertainties and for the perturbed controlled system
with one unknown parameter of the flexible shaft.
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1. INTRODUCTION

Research of the precise motion control is very
important for many industrial applications, for
example the motion control of the robots, the ma-
nipulators and the electronic cams. The problem
of the output tracking involves a design of the
control law such that the output of the controlled
system follows the desired trajectory. This paper
demonstrates the output tracking of the linear
SISO controlled system represented by the DC
motor with a flexible shaft. The main aim of the
output tracking of the DC motor with a flexible
shaft is to ensure that the angular position of
the flexible shaft will follow the desired angular
position.

The proposed output tracking controller is based
on the transformation of the controlled system to
the so-called normal form. This transformation is
the application of the partial feedback lineariza-
tion of the nonlinear control systems from Isidori
(1989) to the linear SISO systems. Consequently,
the standard tracking convergence for the integra-

tor chain presented by Getz (1995) can be used. It
is shown that the proposed output tracking con-
troller ensures the convergence angular position
of the flexible shaft to desired angular position
exponentially. However, it is difficult to determine
accurate mathematical description for the real
physical system represented by the DC motor with
a flexible shaft. Therefore, the robustness of the
proposed output tracking controller is discussed
regarding uncertainties consisted of the perturbed
parameters of the controlled system as well as
external disturbances.

2. OUTPUT TRACKING FOR LINEAR SISO
SYSTEM

Consider the following linear minimum-phase
SISO controlled system without uncertainties

ẋ = Ax + Bu (1)
y = Cx

where x ∈ Rn, u ∈ R, y ∈ R, A ∈ Rn×n,
B ∈ Rn×1, C ∈ R1×n

17th International Conference on Process Control 2009
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By using the state coordinate transformations, the
controlled system (1) can be put to its so-called
normal form. See Isidori (1989).

A relative degree of the controlled system (1) is
defined to be the least positive integer ρ such that

CAρ−1B 6= 0 (2)

This implies that if we differentiate y with respect
to t, the input u appears for the first time at the
ρ-th derivative of the output y. We use this fact
in the following definition.

Define partial coordinate transformation

ξk = y(k−1) = Tkx (3)

where Tk = CAk−1 and k = 1 . . . ρ

To complete partial coordinate transformation (3)
we have to choose remaining n− ρ functions

ηi = Tρ+ix (4)

where Tρ+i ∈ R1×n and i = 1 . . . n− ρ

It is shown by Isidori (1989), that for the con-
trolled system (1) always exist vectors Tρ+i satis-
fying

Tρ+iB = 0 (5)
and the transformation matrix

T =




T1

...
Tρ

Tρ+1

...
Tn




(6)

is regular (det T 6= 0).

It can be shown that, coordinate transformation[
ξ
η

]
= Tx (7)

where ξ = [ξ1 . . . ξρ]
T and η = [η1 . . . ηn−ρ]

T

brings the controlled system (1) to so-called nor-
mal form

Eext :





ξ̇k = ξk+1 k = 1 . . . ρ− 1

ξ̇ρ = b

[
ξ

η

]
+ au

(8)

Eint :

{
η̇ = q

[
ξ

η

]

y = ξ1

where

b = CAρT−1

a = CAρ−1B

q =
[
Tρ+1AT−1, . . . , TnAT−1

]T

We can see that the controlled system (8) consists
of two parts, the external dynamics Eext and the
internal dynamics Eint.

2.1 Zero dynamics

Notice, that the internal dynamics Eint of the
controlled system (8) is related to the so-called
zero dynamics of the controlled system (1). We
define the zero dynamic as follows.

Assume, that we want to ensure zero output y = 0
of the controlled system (8) for all time. It means
(recall y = ξ1) that for all time ξ = 0 and the
input u must necessary be the solution of the
equation

0 = ξ̇ρ = b
[

0
η

]
+ au

u = −a−1b

[
0
η

]

where η satisfies the differential equation

η̇ = q
[

0
η

]
(9)

for arbitrary initial condition η0.

Consequently, the dynamics given by the equation
(9) corresponds to the dynamics describing the
”internal” behavior of the controlled system (1)
when the initial conditions and the input are
chosen to zero the output. We call this dynamics
the system’s zero dynamics. It can be shown that
the eigenvalues of the zero dynamics represented
by equation (9) corresponds to the zeros of the
controlled system (1).

Now, we consider the controlled system (1) in its
normal form (8) and define the control law

u = a−1

(
−b

[
ξ
η

]
+ w

)
(10)

Substituting (10) into (8) results in

Eext :

{
ξ̇k = ξk+1 k = 1 . . . ρ− 1
ξ̇ρ = w

(11)

Eint :

{
η̇ = q

[
ξ

η

]

y = ξ1

We can see that there is only the integration
chain between the input w and the output y. If
we suppose the minimum-phase controlled system
(1), the zero dynamic (9) is stable. It implies
that the internal dynamics Eint of the controlled
system (11) is bounded.

2.2 Tracking convergence for integration chain

According to Getz (1995), to ensure the output y
of the controlled system (11) follows the desired
trajectory yd the standard result of the linear con-
trol theory ”tracking convergence for integration
chain” can be used.
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We define a polynomial

sρ +
ρ∑

j=1

βjs
j−1 = 0 (12)

where the coefficients βj ∈ R are chosen in order
that all the roots of the polynomial have strictly
negative real part. Then the control law

w = y(ρ) −
ρ∑

j=1

βj

(
ξj − y

(j−1)
d

)
(13)

where yd ∈ Cρ is the desired trajectory,

causes y converges to yd exponentially.

We can prove this fact by analyzing the tracking
error coordinates

ek = ξk − y
(k−1)
d (14)

It is clear that the external dynamics Eext of the
controlled system (11) with the control law (13)
for the error coordinates (14) takes a form

ėk = ek+1 k = 1 . . . ρ− 1 (15)

ėρ = −
ρ∑

j=1

βjej

The error system (15) is asymptotically stable and
speed of the convergence to zero depends on the
parameters βj .

3. ROBUSTNESS OF PROPOSED METHOD

Now, we suppose that the controlled system (1)
is affected by some uncertainties. The uncertain
controlled system can be written

x = Ax + Bu + ∆Ax + ∆Bu (16)
y = Cx

where ∆A and ∆B are unknown matrices with
appropriate dimension.

We define the characteristic index of uncertainties
∆Ax to be the least positive integer σ such that

CAσ−1∆A 6= 0 (17)

and the characteristic index of uncertainties ∆Bu
to be the least positive integer ν such that

CAν−1∆B 6= 0 (18)

We suppose that the unknown matrices hold fol-
lowing properties

ν ≥ ρ ≥ σ > 1 (19)

where ρ is the relative degree of the uncertain
controlled system (16). See (2).

It can be shown that uncertain controlled system
(16), through the coordinate transformation (7),
takes a form

Eext :





ξ̇k = ξk+1

ξ̇σ+j = ξσ+j+1 + δσ+j−1

[
ξ

η

]

ξ̇ρ = b

[
ξ

η

]
+ au + ∆b

[
ξ

η

]
+ ∆au

(20)

Eint :

{
η̇ = q

[
ξ

η

]
+ ∆q

[
ξ

η

]
+ ∆ru

y = ξ1

where k = 1 . . . σ − 1, j = 0 . . . ρ− σ − 1

δσ+j−1 = CAσ+j−1∆AT−1

b = CAρT−1

∆b = CAρ−1∆AT−1

a = CAρ−1B

∆a = CAρ−1∆B

q =
[
Tρ+1AT−1, . . . , TnAT−1

]T

∆q =
[
Tρ+1∆AT−1, . . . , Tn∆AT−1

]T

∆r = [Tρ+1∆B, . . . , Tn∆B]T

Substituting the control law (10) to the controlled
system (20) we get

Eext :





ξ̇k = ξk+1

ξ̇σ+j = ξσ+j+1 + δσ+j−1

[
ξ

η

]

ξ̇ρ =
[
∆b−∆aa−1b

]
[

ξ

η

]
+

[
1 + ∆aa−1

]
w

(21)

Eint :

{
η̇ =

[
q + ∆q−∆ra−1b

]
[

ξ

η

]
+ ∆ra−1w

y = ξ1

Obviously, the uncertain controlled system (21)
does not contain the integration chain from the
input w to the output y as in (11). This implies
that using the control law (13) does not cause the
output y to converge to yd exponentially.

4. DC MOTOR WITH A FLEXIBLE SHAFT

Consider the following model of the DC motor
with a flexible shaft. See Fig. 1. where PI denotes

Fig. 1. Model of the DC motor with a flexible shaft

the PI current controller of the motor, uk, ik are
the voltage and current of the armature coil of the

17th International Conference on Process Control 2009
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motor, id is the current setpoint, φm, ωm is the
angle and angular velocity of the motor’s shaft,
φf , ωf is the angle and angular velocity of the
flexible shaft, Jm is the moment of inertia of the
motor’s shaft and Jf is the moment of inertia of
the flexible shaft.

Mm is the electromechanical torque of the motor
given by

Mm = Ktik (22)

where Kt is the torque constant.

Mf is the torque of the flexible shaft and we sup-
pose that Mf depends on the difference between
the motor angle φm and the flexible shaft angle
φf

Mf = k (φm − φf ) (23)

where k is the spring constant.

We assume the following description of the electric
part of the motor

dik
dt

= −R

L
ik −

Ke

L
ωm +

1
L

uk (24)

where L and R is the inductance and resistance of
the armature coil and Ke is the speed constant.

The PI current controller define as

uk = α

(
e +

1
Ti

∫
e dt

)
(25)

where e = id − ik is the control deviation and Ti

is the integral time constant.

State space model of the PI current controller with
the new state variable r can be written

dr

dt
= e (26)

uk =
α

Ti
r + αe

From torque balances of the motor’s shaft and the
flexible shaft we get

Me = Jm
dωm

dt
+ Bmωm + Mf (27)

Mf = Jf
dωf

dt
+ Bfωf

where Bm and Bf are the viscous friction coeffi-
cients of the motor’s shaft and the flexible shaft.

Substituting (23) and (22) into (27) results in the
mechanical description of the controlled system

dωm

dt
=

Kt

Jm
ik −

Bm

Jm
ωm − k

Jm
φm +

k

Jm
φf (28)

dωf

dt
= −Bf

Jf
ωf +

k

Jf
φm − k

Jf
φf

Considering the electric part of the motor (24),
the state space model of the PI current controller
(26), the electromechanical description (28) and
the relations ωm = dφm

dt and ωf = dφf

dt we get the

complete state space model of the DC motor with
a flexible shaft

ẋ = Ax + Bu (29)
y = Cx

where

x =
[
ik r φm ωm φf ωf

]T

u = id

y = φf

A =




−
(

R

L
+

α

L

)
α

LTi
0 −Ke

L
0 0

−1 0 0 0 0 0
0 0 0 1 0 0

Kt

Jm
0 − k

Jm
−Bm

Jm

k

Jm
0

0 0 0 0 0 1

0 0
k

Jf
0 − k

Jf
−Bf

Jf




B =
[α

L
1 0 0 0 0

]T

C =
[
0 0 0 0 1 0

]

The transfer function of the controlled system (29)
is defined by the equation

F (p) =
C adj (pI−A)B

det (pI−A)
(30)

where roots of the polynomial C adj (pI−A)B
are zeros of the controlled system. Thus, it can
be shown that the controlled system has only one
stable zero z = − 1

Ti
given by the integral time

constant of the PI current controller. This implies
that the relative degree of the controlled system
is ρ = 5.

Notice, that according to (4)-(6) the vector T6 can
be chosen as

T6 =
[
1 −alpha

L
0 0 0 0

]
(31)

5. SIMULATION RESULTS

Consider the brushed DC motor A-max 32 sup-
plied by Maxon motor with following parameters:
R = 7.17 Ω, L = 9.53 · 10−4 H, Kt = 4.6 ·
10−4 Nm

A , Ke = 0.29 V s, Jm = 4.4 · 10−5 kg m2,
Bm = 7.05 · 10−5 Nms For more details see
Maxon.

The flexible shaft parameters:
k = 0.01 N

m , Jf = 2 · 10−5 kg m2, Bf = 3 ·
10−5 Nm s

The PI current controller parameters:
α = 11, Ti = 5 · 10−4

We assume the desired angular position of the
flexible shaft in the following form

yd = 3 sin (11t) + 2 cos (8t + 0.5) (32)

The simulation model of the DC motor with
a flexible shaft is designed in Matlab-Simulink
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Ksiw [Ksi Ni]
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armatureCoil_current

To Workspace2

armatureCoil_voltage
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Selector2

UU(E)

Selector1

UU(E)

Selector
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r

u_k

PI_output

K*u

Gain_inv_a

K*u

Gain_beta

b* u

Gain_b

K*u

Gain_T

K*u

Gain_C

d5yD

From
Workspace5

d4yD

From
Workspace4

d3yD

From
Workspace3

d2yD

From
Workspace2

d1yD

From
Workspace1

yD

From
Workspace

x’ = Ax+Bu
 y = Cx+Du

DC motor with 
a flexible shaft

Fig. 2. Simulink model of the controlled system

and shown in Fig. 2. Green blocks correspond
to the model of the DC motor with a flexi-
ble shaft, blue blocks correspond to the pro-
posed controller and yellow blocks correspond
to the generator of the desired angular posi-
tion of the shaft and its appropriate derivatives.
The parameters {β1 β2 β3 β4 β5} are chosen
{55440, 31594, 7155, 805, 45} which leads to the
stable poles {−7, −8, −9, −10, −11} of the er-
ror system (15).

Firstly, we suppose all parameters of the con-
trolled system (29) perfectly known. The following
figures show tracking history of the angular posi-
tion of the shaft (Fig. 3), tracking error given by
error[rad] = yd − y (Fig. 4), voltage (Fig. 5) and
current (Fig. 6) of the armature coil of the motor.

Secondly, all parameters of the controlled system
are perfectly known except the moment of inertia
of the flexible shaft. Let

Jf = Jn
f + ∆Jf (33)

where Jn
f is the nominal value of the moment of in-

ertia of the flexible shaft and ∆Jf is the unknown
perturbation. For example, let this perturbation
corresponds to a load of the flexible shaft.

Thus, for the uncertain controlled system (16)
with perturbation ∆Jf holds

x =
[
ik r φm ωm φf ωf

]T

u = id

y = φf

A =




−
(

R

L
+

α

L

)
α

LTi
0 −Ke

L
0 0

−1 0 0 0 0 0
0 0 0 1 0 0

Kt

Jm
0 − k

Jm
−Bm

Jm

k

Jm
0

0 0 0 0 0 1

0 0
k

Jn
f

0 − k

Jn
f

−Bf

Jn
f




∆A =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 a63 0 a65 a66




where

a63 =
−k∆Jf

Jn
f (Jn

f + ∆Jf )
a65 =

k∆Jf

Jn
f (Jn

f + ∆Jf )

a66 =
Bf∆Jf

Jn
f (Jn

f + ∆Jf )

B =
[α

L
1 0 0 0 0

]T

∆B =
[
0 0 0 0 0 0

]T

C =
[
0 0 0 0 1 0

]

It can be shown that the characteristic indexes
(17) and (18) will be σ = 2, ν = ∞. The
following figures show tracking history of the
angular position of the shaft (Fig. 7), tracking
error given by error[rad] = yd−y (Fig. 8), voltage
(Fig. 9) and current (Fig. 10) of the armature coil
of the motor. The unknown perturbation is chosen
as ∆Jf = 0.05Jn

f .

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

8

Time [s]

A
ng

ul
ar

 p
os

iti
on

 o
f t

he
 s

ha
ft 

[r
ad

]

 

 

y
d

y

Fig. 3. Tracking history (without uncertainties)
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Fig. 4. Tracking error (without uncertainties)
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Fig. 5. Voltage of the armature coil of the motor
(without uncertainties)
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Fig. 6. Current of the armature coil of the motor
(without uncertainties)
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Fig. 7. Tracking history (Jf is perturbed)
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Fig. 8. Tracking error (Jf is perturbed)
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Fig. 9. Voltage of the armature coil of the motor
(Jf is perturbed)
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Fig. 10. Current of the armature coil of the motor
(Jf is perturbed)

6. CONCLUSION

This paper presents the application of one of the
output tracking methods to the electromechanical
system represented by DC motor with a flexible
shaft. It is shown that the proposed method en-
sures exponentially convergence of the tracking
error only for perfectly known parameters of the
controlled system. In the presence of the uncer-
tainties actuating on the flexible shaft the pro-
posed method fails and leads to nonzero tracking
error. In order to reduce the influence of the uncer-
tainties on the controlled system the robustness
properties of the sliding mode control presented
in Barbot (2002) or the robust output tracking
via a modified optimal linear quadratic method in
Shieh et al. (2003) can be used. But these methods
require the controlled system to fulfill the so-called
matching condition. Notice, that the controlled
system (21) satisfies the matching condition only
if σ = ρ. If σ < ρ the controlled system (21) is
denoted as the mismatched uncertain system. The
robust output tracking method for mismatched
uncertain systems is presented in Li et al. (1995)
and Wang et al. (1998)
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