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Abstract: The design problem of robustness controllers for LTI systems is a fundamental problem 
in control theory. Some robustness region methods for PID controllers based on frequency design 
specifications (e.g.  conditions on the maximum of sensitivity and complementary sensitivity 
functions) were published recently. However, these methods find all roots of a high order polyno­
mial equation in each step and consequently are very demanding with respect to computation 
time. The paper introduces more effective procedure for  determination of robustness regions 
based on the classical Laguerre's root finding algorithm. 
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1 INTRODUCTION

The classic PI/PID controllers are still widely used in pro­
cess industry. The main reason of their popularity is their 
simplicity and possibility to tune the controller without 
the process model.

There are several  method of design  PI/PID controllers 
suitable for practice.  Most of them are  semi­empirical 
and applicable only for some specific kind of controlled 
systems. There exist only a few general methods applic­
able for non rational  transfer  functions, e.g. time delay 
systems and fractional order systems. Most of them are 
based on parameter plane methods, e.g. D­partition meth­
od  (Neimark 1948) or robustness regions method (Shafiei 
1997, Schlegel 2003).

These methods are mainly based on open­loop shaping to 
obtain the proper maximum value of sensitivity and com­
plementary sensitivity functions. For example, the restric­
tions are maximal values of sensitivity and complement­
ary sensitivity functions in the defined frequency interval. 
These  restrictions  specify  circle  areas  in  the  complex 
plane,  where  Nyquist  plot  have  not  to  be  placed.  The 
design specifications for specific type of controller isol­
ates the sensitivity and complementary sensitivity regions 
(called robustness regions) in the parameter plane. Inter­
section of all robustness regions determines set of control­
ler parameters, which complies all design specifications. 

In this paper we consider design requirements for maxim­
um  value  of  complementary  sensitivity  function.  The 
open­loop Nyquist plot must not to have any intersection 
with given circle except one tangential point. This leads to 

solving high order polynomial equation in the each step. 
Previously published work (Schlegel 2003) finds always 
all roots in the each step which demands much computa­
tion  time.  To  decreasing  the  computation  time  the 
Laguerre's root finding algorithm is used. There are com­
puted only such roots, which are really needed.

2 CONTROL LOOP

Because of simplicity, we restrict ourselves only to the PI 
controller  design  only.  The presented design procedure 
can be simply extended to others controller types, but the 
corresponding equations are more complex.

Consider feedback control loop shown in Fig.  1, where 
FC, FP are controller transfer function a process transfer 
function respectively. The PI controller is given by:

FC  j=k
k i

j
=k

k d
j

, k ,d0 (1)

where k, ki are its real positive engineering parameters and 
k i=k d . 

Figure 1: The general feedback control system

The process transfer function is defined by

FC  j  F P  j 

L  j
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F P  j=a  j b  (2)

where a ,  b   are arbitrary real part and ima­
ginary part functions with parameter  .  

Now, open­loop transfer function is given by

L  j=a k
b k d
 

u 

 j b k−
ak d
 

v 

(3)

Further denote:

∂

∂
L  j=u1 , k , d  j v1  , k , d  (4)

∂

∂
F P  j=a1 j b1 (5)

where u1 , v1  are given by following equations

u1=
d kb1 k2a1 −d k b 

2
(6)

v1=
k 2b1 −d ka1d k a 

2
(7)

3 ROBUSTNESS REGIONS

Consider  only the design requirements to maximum 
value  of  sensitivity  S  j  and  complementary 
T  j  sensitivity functions, defined by

S  j=
1

1L  j
, (8)

T  j=
L  j

1L j
(9)

The maximum sensitivity  M S  and maximum com­
plementary sensitivity  M T  are, respectively, defined 
by

M S=sup


∣S  j∣ , M T=sup


∣T  j∣ (10)

Both of these constraints can be interpreted as a limit­
ation on the open­loop L  j  in the following form: 
Nyquist plot  L  j ,  ∈〈0,∞  is outside a circle 
with center c  and radius r0 .

The sensitivity M S  corresponds with:

c=−1 , r= 1
M S

(11)

and complementary sensitivity M T  with

c=−
MT

2

M T
2−1

, r=
MT

∣M T
2−1∣

(12)

The Nyquist plot  L  j  is tangential to the circle 
with the centre c and radius r at the frequency   if it 
holds

u−c2v2=r2 (13)

and

u−cu1v v1=0 (14)

where the equation (14) express the requirement for 
the Nyquist  plot  to  be tangential  to  the circle  con­
sidered. The situation is shown in the Fig. 2.  

Figure 2. Circle robustness region

We want to find all points in the k-ki parameter plane 
which satisfy above stated conditions (13, 14) for the 
Nyquist plot L  j .

Using (3,  6,  7),  we obtain from (13)  the following 
equation for controller parameter k

k=a1c3b1c d2−bc d/

 bb1aa1
3bb1a a1d 2

−b2−a2d 2 

(15)

By substituting (15) into (14), we obtain the following 
polynomial equation (16) for indeterminate variable d. 
It  is  4th­degree  order  polynomial equation for  here 
considered PI controller (but it is 7th­degree order for 
PID controller).

c4d 4c3 d3c2d 2c1 dc0=0 (16)

For brevity the coefficients  ci  are given in the ap­
pendix.

Let dl , l=1,2 ,, m  denote the real positive roots 
of  the  polynomial  equation  (16),  then  the  pairs 
[ kl  dl 

kl

, k  dl l dl
ki

l

]
 describe  parametric  curves  with 

parameter   which creates the boundaries of robust­
ness regions in the parameter plane k−k i .

4 ENHANCED ALGORITHM

Finding all roots for every frequency   in each step 
demands very much computation time. It is obvious 
that only some result roots are really needed. For ex­
ample,  for PI controller is  suitable mostly only one 
root. The inconvenient roots are mostly negative, com­
plex conjugate or designed close­loop system is un­
stable for them.

In this paper, the main idea is to compute only such 
roots of  (16), which are really needed. Consider that 

Im

Re

∂ L
∂

u−c2v2=r 2

u−cv=0

[u , v ]

r

c
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we have vector of pairs [ kl  dl  j , k i d  j
l


l

]  

for  given  frequencies   j∈ ,  which  creates  the 
boundary of robustness region in the parameter plane 
k−k i .  Let holds   j≈ j1  for every   j∈ . 

From this  follows that  the result of   (16)  for   j , 

 j1  is almost same, i.e. dl  j≈ dl  j1 .

For finding roots of  (16) the approximation Laguer­
re's root finding algorithm is used. More details about 
this zerofinding method are in (Wankere 2001). The 
result  dl  j in previous step is used as initial ap­

proximation  for  finding  solution  dl  j1  in  the 
next step.

The robustness regions algorithm can be described in 
the following steps:

(1) Choose logarithmic sequence 
={1,2, ,N }  

Set j=1

(2) Find all roots of (16) for frequency = j , 

choose  real  positive  roots  dl  j  , 
l=1,2 ,m .

(3) By using Laguerre's  method and the result 
from previous step as initial  approximation 
the root dl  j1= f d  j 

l , j   is com­
puted.

(4) If  the found roots  dl  j1  are suitable 
go to the next step else return back to the step 
2. If the second attempt is unsuccessful too, 
the  solution for   j1  probably does not 
exist, go the step 5.

(5) Set j= j1 . If holds jN  go back to the 
step 3, else go to the step 6.

(6) The End – all pairs k−k i  are computed

EXAMPLE – HEATING PROCESS

Assume thermal process ­ metal rod heated by Peltier 
heater, which is shown in Fig 3. The rod is heated at 
the one end and the temperature is measured at  the 
second temperature isolated end. The length of the rod 
is  l r . The actuating variable  u(t) is heat energy put 
into or taken out of the metal rod. The process (con­
trolled) variable y(t) is temperature of the isolated end 
of the rod. The temperature energy can lost nowhere. 
The plant is described by following partial differential 
equation. 

∂ xt ,
∂ t

=
xt ,

∂2
(17)

where  xt ,  is temperature in the length of    at 
the time t. 

Boundary condition of the heated end

∂ x t ,


|=lr
=K u t  (18)

Boundary condition of the isolated end

∂ x t ,


|=0=0 (19)

Figure 3. Model of metal rod 

It can be shown that the plant is described by the fol­
lowing transfer function

P  s=
K 

 s sinhl r  s
 

(20)

where    is th thermal conductivity constant,  K  is 
thermal transfer constant and l r  is length of the rod. 
These  constant  are  chosen  =0.0025 ,  l=0.5 , 
K=1  in this example.

We  consider  design  requirements  to  the  maximum 
value  of  sensitivity  M T=1.4  (i.e.  r≈1.46 , 

c≈−2.04 ) and complementary sensitivity  M S=2  
(i.e. r=0.5 , c=−1 ) functions according to (10). 

In the Fig. 5 the corresponding robustness regions are 
depicted. The red plot (the nearest one to the x­axis) 
corresponds to maximum value complementary sensit­
ivity  function  requirement.  The  pair   of  controller 
parameter k−k i  have to be chosen under the red plot 
to meet both design requirements. 

Figure 4. Open loop Nyquist plot
for metal rod model

In the Fig. 4 are shown design requirements and open­
loop Nyquist  plot  for  the  chosen point  k=2.722 , 
k i=0.0193  (marked  with “x” in the Fig. 5).

Note that it could be specified others requirements for 
open loop transfer function. Every design requirement 
then determines some robustness region in the para­
meter plane. The intersection of all robustness regions 
satisfies all design requirements.

yt
ut

l r


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Figure 5. Parameter plane

CONCLUSION

The design method of robustness regions can be useful 
in practice and it can be used for wide spectrum of 
design  problems for  arbitrary  process transfer  func­
tion. Its main drawback is high demand for computa­
tion time. In the interactive design it is necessary to 
compute robustness regions repeatedly and it takes a 
lot of time on nowadays PC. This makes  difficulties 
to use this method in practice. The method how sim­
plify the computation and rapidly decrease the compu­
tation time was described in this paper.  
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APPENDIX

Coefficients of polynomial equation (16):

c0=−b2 b1
2−2a a1b b1−a2 a1

2 6 r2b2 b1
22a a1bb1a 2a1

2 c26

c1=−2a bb1
2−2a a1

2 b c252a b2b1−2a1b3 c24

c2=[−2b2 b1
2−4 aa1 b b1−2a 2a1

2 42b32 a2b b12 aa1 b22a3 a13] r2

b2a2 b1
22a a1bb1a1

2b23a2 a1
2 c24 −2b3−4 a2b b1−2 a3a1 c

23

b4a2b2 c22

c3=−2a bb1
2−2a a1

2 b c234a b22 a3b12 a2a1 b c22−2a b3−2a3b c2

c4=[−b2 b1
2−2a a1b b1−a2a1

2 22b32a2b b12aa1 b22a3 a1−b4−2a2 b2−a4 ]r 2

a2 b1
2a2 a1

2 c22−2 a2b b1−2a3 a1c
2a 2b2a 4c2
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