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Abstract: A multiobjective optimization procedure based on evolutionary algorithm has been
developed to determine the optimal control policies for a fed-batch emulsion copolymerization
reactor, particularly for styrene and butyl acrylate in the presence of n-C12 mercaptan as chain
transfer agent (CTA). The process model was elaborated and validated experimentally in order
to predict the global monomer conversion, the number and weight average molecular weights, the
particle size distribution and the residual monomers. The process objectives are to produce core-
shell particles with specific end-use properties and high productivity. This has been achieved by
the maximization of the conversion at the end of the process and the minimization of the error
between the glass transition temperature and a designed profile subject to a set of operational
constraints. The nondominated Pareto solutions obtained were ranked according to the decision
maker preferences using multiple attribute utility theory (MAUT). The selected solution gives

the best set of the decision variables to be implemented to the real system.
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1. INTRODUCTION

Multiobjective optimization problems are encountered in
most real-world applications and more recently in chemical
processes (Fonteix et al. (2004), Garg and Gupta (1999),
Mitra et al. (2004), Sakar et al. (2007)). Since such prob-
lems involve several objective functions with conflicting
nature, the final optimum is not unique but a set of
non dominated solutions (the Pareto front) which show a
trade-off between the whole objectives. Genetic algorithms
(GAs) are well adapted tools to solve multiobjective prob-
lems. This kind of technique stands for a class of stochastic
optimization methods that simulate the process of nat-
ural evolution (mainly genetic algorithms, evolutionary
programming, and evolution strategies). These algorithms
have proven themselves as a general, robust and power-
ful search mechanism. Moreover, Evolutionary algorithms
(EAs) seem to be especially suited to multiobjective op-
timization because they are able to find multiple Pareto-
optimal solutions in a single simulation run.

Emulsion polymerization is an important industrial pro-
cess used to produce a great variety of polymers of multiple
uses (e.g. paints, adhesives, coatings, varnishes). Moreover,
it has significant advantages over bulk and solution poly-
merization processes such as heat removal capacity and
viscosity control. These advantages result mostly from the
multiphase and compartmentalized nature of the emulsion
polymerization which allows the production of polymers
of high molecular weight at high polymerization rates,
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delivering a high versatility to product qualities. However,
the complexity of emulsion polymerization systems arising
from factors such as the multiphase nature, nonlinear
behaviour and sensitivity to disturbances induce more
intense difficulties on modelling and make the development
of optimization procedures of emulsion polymerization re-
actions a very challenging task.

The end-use properties of the products obtained by emul-
sion polymerization and copolymerization are governed
by the molecular weight distribution (MWD), polymer
microstructure, glass transition temperature (T} ), particle
size distribution (PSD) and particles morphology. These
parameters must be involved in the process design, opti-
mization and control in order to produce latex particles
with specific and controlled properties.

The present paper deals with a multiobjective dynamic
optimization of an emulsion copolymerization fed-batch
reactor. The aim is to produce core-shell particles with
specific mechanical and film-forming properties with high
productivity. These characteristics are achieved by using
two objective functions subject to a set of tight operational
constraints and the mathematical model of the system.
The first objective function is related to the glass transi-
tion temperature of both core and shell while the second
deals with the final conversion.

The nondominated solutions (Pareto’s front) are obtained
by using evolutionary algorithm (EA). This set of opti-
mal solution is ranked according to the decision maker
preferences by using multiattribute utility theory (MAUT)
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which leads to the selection of the unique solution to be
implemented.

2. MULTIOBJECTIVE OPTIMIZATION

A multiobjective optimization problem (MOP) involves
simultaneous optimization of more than one objective
function. That is the case of the most real-life optimiza-
tion problems faced in industry which usually deal with
more than one competing objective. Traditionally, such
problems are solved taking a weighted average of all of
the objectives and treating it as a single objective op-
timization problem. However, the solution then depends
on the chosen weights, which, in turn, are subject to
individual perception and knowledge of the process. This
is quite arbitrary, and a deficiency is always inherent in
this method. Single and multiple objective function opti-
mization problems are therefore conceptually different. In
multiobjective optimization, there is no optimal solution
that could be characterized as the best solution (i.e. global
optimum) with respect to all objective functions. Instead,
there is an entire set, of solutions that are equally good. The
solutions are known as Pareto-optimal solutions (i.e. non-
dominated solutions). The values of the objective functions
corresponding to the set of optimal solutions are called the
Pareto front and represent the best trade-offs between the
considered often conflicting objectives (Fig.1).

A Pareto-optimal set provides a wide range of design and
operational options to designers and practitioners and,
hence, enhances the possibility of finding more efficient
processes.
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Fig. 1. Tllustration of Pareto optimal set (Min (f1, f2))

Population-based algorithms such genetic algorithms (GAs)
have proven there efficiency to find Pareto-optimal set
(Gupta and Gupta (1998), Silva and Biscaia (2003), Mitra
et al. (2004)). GA is a search technique based on the
working principles of genetics and natural selection; it em-
ploys a population-based approach whereby the search for
a solution is performed with a group of estimated solutions
rather than a single one. Starting with a set of randomly
generated initial estimates of the decision variables, GA
tries to reach the solution with the help of special opera-
tors. In each generation, new set of values of the decision
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variables are found through special operations, namely,
reproduction, crossover, and mutation, on their old values.
This is done in an attempt to produce more desirable
objective values until a preassigned number of generations
is computed or a limiting condition is reached.

2.1 Process model

The mathematical model for the present study is based on
the kinetics of the complex elementary chemical reactions
occurring both in the aqueous phase and in the particles,
the particle nucleation, radical absorption and desorption
(Table 1).

Aqueous phase

k
Initiation I, =% 2RY,
kza
Inihibition RYy+ Zag — P+ 22,
k
Nucleation RS, + micelle =N, particle + R®

Radical absorption
Organic phase

ke
Rj, + particle =2 particle + R®

kpij
R? + M; — R;

Ktcij

R+ R} — P

Propagation

Termination by combination

kiaij
Termination by Ry + RS 14 9p
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k2
Inihibition R? + Z, R py Zy

Transfer to monomers

Transfer, chain transfer
agent-monomers

Radical desorption

trmij

k
R;-‘-Mj — P+R;

k
RS +TA, — P+TAS

kq
° €s °
R* — R

Table 1. Kinetic scheme for emulsion copoly-
merization (i,j = 1,2)

The reaction rates derived from the kinetic scheme, the
species partition, the gel and glass effects and the effect
of the temperature are not presented here for the sake of
brevity.

The process model of the emulsion copolymerization of
styrene and butyl acrylate in the presence of n-C12 mer-
captan as chain transfer agent (CTA) was developed and
validated experimentally for a batch reactor and extended
to the fed-batch case. The objective of the model is to
predict different variables including overall monomers con-
version, number and weight average molecular weights,
particle size distribution and residual monomer fractions.
The model obtained is a hybrid nonlinear system presented
in (Table 2). As mentioned before, for brevity reasons the
significations of the different terms are not presented here
and the sketch of the model stands to show the complexity
of the system and the different phenomena involved in the
process. More details of the novelties and the approach
used to elaborate the model are presented in Benyahia et
al. (2008).
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Table 2. Process model equations

dt

d(N"L>

A
Shell stage
¥ @)
8 —
to tfc tfs tf Tﬁne
(@
5 3 == designed profile
g Core stage Shell stage == real profile
o
E T2
5
= To1 —_—
8
(U] )
particles
do dic dis  diameter

(b)

Fig. 2. (a) Feed rate profile (b) Glass transition tempera-
ture profile
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2.2 Formulation of the problem

The objective of the process is to produce core-shell
particles with a specific end-use properties depending
on the glass transition temperature profile (Fig.2b). The
monomers used (styrene and butyl acrylate) in the copoly-
merization process have different reactivity ratios and their
polymers have very different glass transition temperature
(-54 °C for butyl acrylate and 100 °C' for styrene). The
key feature of the optimization problem is to determine
optimal feed rate and time periods profiles necessary to
control polymerization reactions in order to produce par-
ticles with a designed morphology and glass transition
temperature (Fig.2a). Two objective functions have been
selected for the optimization of this process. The first
one is to minimize the error between the glass transition
temperature and the desired profile. The second objective
is to maximize conversion at the end of the process which
leads to higher productivity.

Min f=[f1, f2]"

1 bre
flzi/ ‘Tg_Tgl‘dt
tre —to Jy,
1 trs
+7/ T, — Tyo| dt
trs —tre Jigo ‘
f2=—X(ty)
st. &=f(zt),ul),p,t); =zt=0)=z0 (1)
1 tre
7/ (0.9 — X(t))*dt < €
tre —to Ji,
X(t) = 0.9

Wing < u(t) < Usup

& = Vg, My, My, Myy, My, 1,Z,TA,S,
Np, Ry, Ra, X1, X2, Ty A1, A2y Ny, L1, Lo]

ul = [Aty, Aty, ..., Aty, Q1,Q2, ..., Q]

where Ty, is the time dependent glass transition tempera-
ture, T, the desired glass transition temperature for the
core (5°C), Tyo the desired glass transition temperature for
the shell (10°C), ts. and tss the times necessary to make
the core and the shell production respectively, X (¢7) is
the overall conversion at the end of the process and w the
control vector (feed rates and time periods).

The control variables are time independent parameters
and the bounds of these variables are selected according
to practical operating conditions.

At the first stage of the process, the primary particles are
produced under batch conditions. This stage ends when
the overall conversion reaches the value of 0.9. The reac-
tor is then fed with pre-emulsioned monomers and chain
transfer agent (CTA). Core stage is designed to be under
starving conditions (no droplets are produced and the
feed rate is equal to the polymerization rate). Styrene is
consumed faster than butyle acrylate due to the difference
between there reactivity ratios. As a result, the instan-
taneous glass temperature will grow to reach the desired
value. This stage is operating under a constraint on the
overall conversion. The shell stage is conducted without
required conditions or constraints. Only the objective to
reach the second step of the designed glass temperature
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profile is kept. Feed rates are more important at this stage
to allow the growth of the glass temperature by adding
more quantities of styrene. The final stage is operating
under batch conditions. Since no styrene is added the
residual butyl acrylate is consumed leading to lower glass
temperatures. The objective at this stage is to maximize
the overall conversion which means maximizing produc-
tivity and minimizing residual volatile organic compounds

(VOC’s).
3. DECISION SUPPORT ALGORITHM

The approximation of the Pareto zone obtained with an
evolutionary algorithm is a set of compromises (Fig.1).
This is an important information for industrialists, but in
a second step, we are confronted to a multiple criteria de-
cision problem to classify all nondominated points. Then,
the decision maker has to define his preferences based on
his knowledge of the process. These expressions allow to
propose a decision support system which aggregates all
the decision maker’s preferences. The decision maker has
to express several parameters to define his preferences.
He must introduce the weights wy of each criterion k,
depending on the relative importance of the criteria.

The decision support approach used in this work is the
multiple attribute utility theory (MAUT). It is a system-
atic method of identifying and analyzing multiple variables
to provide a common basis for arriving at a decision. In
the MAUT method, the key element is to derive a multi-
attribute utility function for which single utility functions
and their weighting factors are necessary. The procedure
is as follows (Kim and Song (2009)):

e Setting an objective and establishing the attributes
for the goal

Setting a range of the attributes

Deriving the single utility functions for each attribute
Calculating the weighting factors for each attribute
Deriving the multi-attribute utility function

According to the decision maker preferences the single util-
ity function of the first criterion is chosen as a decreasing
function while the second one is an increasing function.
The single normalized utility functions used in this work
are as follows :

B fl"”“"—_fl(u) "

gl('ll,) o (fl mazxr fl min) (2)
B M)w

gQ(u) a (fQ mazx — f2 min (3)

Where f1 maz, f2mazs f1min, f2 min are the maximum and
minimum values of the first and second objective functions
obtained from the Pareto front.
The final multi-attribute utility function is given as a
combination of the single utility functions as follows :

(4)

U(u) =wi g1(u) + w2 g2(u)
Where wq, wo represent the weighting factors of the utility
. 2

function (3, ; w; =1).

The Pareto set elements are ranked according to their
multi-attribute utility function value (score) which leads
to the best solution (best values of the decision vector) to
be implemented.
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4. RESULTS AND DISCUSSION

In the preceding sections, the multiobjective problem and
the decision aid strategy were presented in details. In the
current section, the results obtained from the study are
presented. The operating conditions are summarized in
Table 3.

Species Initial charge Feed charge
Butyl acrylate, (g) 12 48

Styrene, (g) 12 48
Initiator, (g) 1 0

n-C12 mercaptant (CTA), (g) 0.12 0.48
Surfactant (REWOPOL SBFA), (g) 3 12

Water, (g) 114 445
Temperature, (°C) 70

Table 3. Composition used for the simulation
of the process

The first result of the multiobjective optimization is the
Pareto-optimal set of solutions depicting tradeoffs between
the competing objectives. This set was generated by us-
ing an evolutionary algorithm (EA) with different initial
populations. The best results obtained are presented in
Fig. 3. The best value of the objective functions taken
individually are 4.4 (the error between the designed and
the resulting profiles) and —0.948 for the criterion related
to the final conversion.

2e)
OCDOOO 00000

Fig. 3. The Pareto front of the copolymerization multiob-
jective problem

The decision aid method developed in this work (MAUT)
leads to the best solutions according to the decision maker
preferences and the utility function used. The weighting
factors and parameters of the single utility functions used
in this work are given in table 4.

objective function  weight (w;) «;
I 0.65 15
fo 0.35 0.5

Table 4. Weights and parameters of the single
utility functions

The best profile of the decision variables (time periods
and feed rates) obtained are presented in (Fig. 4). It is
noteworthy that the feed profile shows clearly the limits
of the second and the third stage. The second one (core
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Fig. 4. Feed rate profile of the best solution
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stage) is characterized by low feed rate which corresponds
to starving condition where styrene is more consumed
leading to the designed glass temperature. Similarly the
third stage shows higher feed rate necessary to increase
once more the glass temperature.

The implementation results of the best profile are given
by Fig. 5-8. First, the glass temperature profile obtained
corresponds to the designed profile (7, = 5 °C and
Tyo = 10°C). The first stage (the primary particles forma-
tion or seeding) ends with a fall in the glass temperature
value. This is quite realistic since butyle acrylate is more
consumed when no styrene is added. This phenomenon is
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also noticed at the end the process.

The overall conversion at the stage of the core formation
lies in the limit of the constraint (Fig.6). The conversion
falls at the shell stage as a result of higher feed rates (no
constraints on the conversion are applied). On the other
hand, the last stage (batch process) shows that the overall
conversion grows to reach the final conversion which is
high enough compared to the best solution obtained for
the second objective function.

The end-use properties of the final product are related to
the average particles diameter. The profile of the average
diameter presented in figure 7 shows that the particles
diameter grows regularly which means that the number
of particles is not changing during the operation. Since
no new particles are created during the different stages of
the process, the particle size distribution (PSD) is narrow
and the morphology of the particles is well controlled and
consequently the end-use properties of the product.

The residual fraction of styrene is another relevant in-
formation which shows how styrene is consumed during
the different stages of the process (Fig.8). Since styrene is
more reactive than butyl acrylate, the residual fraction of
styrene falls down first with the batch stage and grows up
after the start of the feed to reach a constant value related
to the designed profile of the glass transition temperature
(Ty). This fraction grows once more to reach the second
value necessary to the second part of the (7). During the
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last stage where no monomers are added, the fraction of
styrene falls down according to the kinetic of the styrene
consumption.

More results related to the number and weight average
weights and residual monomers are not presented here for
the sake of brevity.

5. CONCLUSIONS

In this work, multiobjective optimization problem has
been addressed to determine optimal feed profiles neces-
sary to produce core-shell latex particles with specific end
use properties depending on the application (e.g. paints
or adhesives). This has been achieved with a designed
glass temperature profile and maximum final conversion
necessary to maximize production and minimize residual
volatile organic compounds (VOCs). The non dominated
solutions (Pareto set) were obtained by an evolutionary
algorithm developed for this purpose. This set of solution
give a wide range of operational options necessary to the
improvement of the process. Pareto solutions were ranked
by using MAUT strategy. This approach which is based
on the decision maker experience and preferences, leads to
the unique solution to be implemented. The simulations
of the best solution showed a good agreement with the
desired profiles.

Finally, the experimental implementations of the best so-
lution are undertaking and the results will be presented in
the conference.
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