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AN EFFECTIVE ROBUST CONTROLLER ALGORITHM DESIGN
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Abstract: The paper deals with the design of robust digital controller using advanced
approach based on the reflection vectors techniques. Proposed robust algorithms were 
successfully verified on the case study examples for different dynamical processes. In this 
paper we demonstrate an application of theoretical principles to a robotic benchmark 
problem. Simulations were realized in MATLAB-Simulink systems. Obtained numerical 
and simulation results confirm applicability of the theoretical principles for robust control 
of processes subject to parametric model uncertainty.

Keywords: robust control, robust stability, parametrical uncertainty, pole-placement, 
reflection vectors techniques, quadratic programming

1 INTRODUCTION

During last ten years, development of robust 
control elementary principles and evolution of new 
robust control methods for different model uncertainty 
types are visible. Progress in new techniques and 
theories in control of processes with model 
uncertainty is necessary because of performance
requirements on control of complex processes
containing large number of loops, activities 
coordination of a many agents in hybrid and 
stochastic control of systems containing large plant 
model uncertainties. Based on theoretical 
assumptions, modeling and simulation methods, an 
effective approach to the control of processes with 
strong and undefined uncertainties is designed. Such 
uncertainties are typical for biotechnology processes, 
chemical plants, automobile industry, aviation etc. For 
such processes is necessary to design robust and 
practical algorithms which ensures the high 
performance and robust stability using proposed 
mathematical techniques with respect the parametric 
and unmodelled uncertainties.  Solution to such 
problems is possible using robust predictive methods 
and „soft-techniques“ which include fuzzy sets, 
neuron networks and genetic algorithms.

Robust control is used to guarantee stability of
plants with parameter changes. The robust controller 
design consists of two steps:

 analysis of parameter changes and their 
influence for closed-loop stability,

 robust control synthesis.
In hybrid control structures that combine the 

discrete controller and continuous plant, it is difficult 
to assess the closed-loop stability. One possibility is 
transformation of the controller and the continuous 
plant to the discrete-time region and specifying
requirements for the discrete controller design. The 

problem of the robust controller design can be solved 
as:

 Time-optimal robust controller design
 Design of the robust controller based on the 

pole-placement

In both parts of the robust controller design it is 
possible to evolve from the solution of Diophantine 
equations and quadratic programming techniques.

2 PROBLEM FORMULATION

Consider the robust control synthesis of a scalar 
discrete-time control loop. Transfer function of the
original continuous-time system is described by the 
transfer function
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Transfer function of (1) can be converted to its 

discrete-time counterpart
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For the plant (2) a discrete-time controller is to be 

designed in form
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The corresponding closed-loop characteristic 

equation is
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Substituting (3) and (2) in (4) after a simple 

manipulation yield the characteristic equation
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Unknown coefficients of the discrete controller 

can be designed using various methods. In this paper 
robust controller design method based on reflection 
vectors is used.

The pole assignment problem is as follows: find a
controller  zGR  such that C(z)=e(z) where e(z) is 

a given (target) polynomial of degree k. It is known 
[8] that when 1 n , the above problem has a 

solution for arbitrary e(z) whenever the plant has no 
common pole-zero pairs. In general for 1 n
exact attainment of a desired target polynomial e(z) is 
impossible.

Let us relax the requirement of attaining the target 
polynomial e(z) exactly and enlarge the target region 
to a polytope V  in the polynomial space containing 
the point e representing the desired closed-loop 
characteristic polynomial. Without any restriction we 
can assume that 10  pan

 and deal with monic 

polynomials C(z), i.e. 10  .

Let us introduce the stability measure as ρ = cT c, 
where

CSc 1
(6)

and S is a matrix of dimensions (n + μ + 1) x (n + 
μ + 1) representing vertices of the target polytope V.
For monic polynomials holds

1c
1k

1i
i 



 (7)

where k = n + μ. If all coefficients are positive,        
i.e. ci > 0, i = 1,..., k + 1, then the point C is placed 
inside the polytope V. 

The minimum ρ is attained if

1k

1
ccc 1k21 
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(8)

Then the point C is placed in centre of the polytope V. 

In matrix form we have

C = G x (9)
where G is the Sylvester matrix of the plant with
dimensions    21   dn and x is the 

 2 -vector of controller parameters:

 T01 q,,q,1,p,,px   .

Now we can formulate the following control 
design problem: find a discrete controller  zGR  such 

that the closed-loop characteristic polynomial C(z) is 
placed:

a. In a stable target polytope V, V)z(C   (to 

guarantee stability)
b. As close as possible to a target polynomial e(z),

V)z(e  (to guarantee performance).
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Let the polytope V denote the   N1k   matrix 

composed of coefficient vectors
jv , Nj ,,1 

corresponding to vertices of the polytope V.
Then we can formulate the above controller design 

problem as an optimization task: Find x that 
minimizes the cost function

2

x

TTT

x
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(10)
subject to the linear constraints

),x(wVxG 
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(12)

.1)x(w
j
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Here w(x) is the vector of weights of the polytope 
V vertices to obtain the point C = G x. Fulfillment of 
the latter two constraints (12), (13) guarantees that the 
point C is indeed located inside the polytope V. Then, 
finding the robust pole-placement controller 
coefficients represents an optimization problem that 
can be solved using the Matlab Toolbox OPTIM 
(quadprog) with constraints [9].

 Generally J1 is a kind of distance to the centre of 
the target polytope V. Is it better to use another 
criterion J2, which measures the distance to the Schur 
polynomial E(z)

).EGx()EGx()EC()EC(J TT
2 

(14)
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It is possible to use the weighted combination of J1

and J2
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(15)

and to solve the following quadratic programming 
task
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Assume the discrete robust controller design task 

with parametrical uncertainties in system description.
Let us also assume that coefficients of the discrete-
time system transfer functions an , ..., a1 and bn , ..., b1

are placed in polytope W with the vertices 
 jj

n
jj

n
j bbaad 11 ,,,,  :

}M,...,1j,d{convW j 
(17)

As (9) is linear in system parameters, it is possible 
to claim that for arbitrary vector of the controller 
coefficients x is the vector of the characteristic 
polynomial coefficients C(z) placed in the polytope 

A with vertices M1 a,,a  :

}M...,,1j,a{convA j 
(18)

where xDa jj  and jD is the Sylvester matrix 
of dimensions (n + μ + d + 1) x (μ + υ + 2),
composed of vertices set  d j, as in case of the exact 
model (9).

2.1   Problem Formulation

The digital controller  T01 q,,q,1,p,,px    is 

to be designed such that all its vertices a j, j = 1, ..., M 
are placed inside a stable desired target polytope V. 

This problem can be effectively solved using 
quadratic programming procedure. It is necessary to 
find the controller x by minimization of the cost 
function
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where IM is identity matrix of dimension M,  is the 

Kronecker product and  T
M

T
1

T_
D,,DD  .

2.2   Stable Region Computation via Reflection 
Coefficients

Polynomials are usually specified by their 
coefficients or roots. They can be characterized also 
by their reflection coefficients using Schur-Cohn 
recursion.

Let Ck(z
-1) be a monic polynomial of degree k with 

real coefficients ciR, i = 0, ..., k,

C(z-1) = 1 + c1 z
-1 + ... + ck z

-k. (20)

Reciprocal polynomial )( 1 zCk  of the polynomial 

)z(C 1
k

  is defined in [11] as follows

k1k
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Reflection coefficients ri, i = 1, ..., k, can be 

obtained from the polynomial )z(C 1
k

 using 

backward Levinson recursion [12]
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where ii cr   and ic is the last coefficient of 

)( 1zCi
of degree i. From (22) we obtain in a 

straightforward way:
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Expressions for polynomial coefficients )( 1
1


 zCi

and )( 1zCi
 result from equations (22) and (23):
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The reflection coefficients ri are also known as 
Schur-Szegö parameters [11], partial correlation 
coefficients [6] or k-parameters [13]. Presented forms 
and structures were effectively used in many 
applications of signal processing [13] and system 
identification [6]. A complete characterization and 
classification of polynomials using their reflection 
coefficients instead of roots (zeros) of polynomials is 
given in [11].

The main advantage of using reflection 
coefficients is that the transformation from reflection 
to polynomial coefficients is very simple. Indeed, 
according to (23) and (25), polynomial coefficients ci

depend multilinearly on the reflection coefficients ri. 
If the coefficients Rci   are real, then also the 

reflection coefficients Rri   are real.

Transformation from reflection coefficients ri,       
i = 1, ..., k, to polynomial coefficients ci, i = 1, ..., k, 
is as follows

)k(
ii cc  ,      i

)i(
i rc  ,                                   

(26)
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 and 

T0  is a row vector of zeros.

Lemma 1.  A linear discrete-time dynamic system 
is stable if its characteristic polynomial is Schur 
stable, i.e., if all its poles lie inside the unit circle. 

The stability criterion in terms of reflection 
coefficients is as follows [11].

Lemma 2. A polynomial C(z-1) has all its roots 
inside the unit disk if and only if ,1ri    i = 1, ..., k.

A polynomial C(z-1) lies on the stability boundary 
if some ,1ri   i = 1, ..., k. For monic Schur 

polynomials there is a one-to-one correspondence 

between  T1k c,,cC   and   .r,,rr T
k1 

Stability region in the reflection coefficient space 
is simply the k-dimensional unit hypercube 

 .k,,1i),1,1(rR i  . The stability region in the 

polynomial coefficient space can be found starting 
from the hypercube R.

2.3   Stable Polytope of Reflection Vectors

It will be shown that for a family of polynomials 
the linear cover of the so-called reflection vectors is 
Schur stable.

Definition 1. The reflection vectors of a Schur 
stable monic polynomial C(z-1) are defined as the 

points on stability boundary in polynomial coefficient 
space generated by changing a single reflection 
coefficient ir  of the polynomial C(z-1).

Let us denote the positive reflection vectors of 
C(z-1) as   ,k,,1i,1rC)C(v ii   and the negative 

reflection vectors of C(z-1) as 
  .k,,1i,1rC)C(v ii 

The following assertions hold:
1. every Schur polynomial has 2k reflection vectors 

)C(vi
 and ;k,,1i),C(vi 

2. all reflection vectors lie on the stability boundary 
);1r( v

i 

3. the line segments between reflection vectors 

)C(vi
 and )C(vi

 are Schur stable.

In the following theorem a family of stable 
polynomials is defined such that the polytope 
generated by reflection vectors of these polynomials 
is stable.

Theorem 1. Consider  ,1,1rC
1   1,1rC

k  and

0rr C
1k

C
2   . Then the inner points of the 

polytope V(C) generated by the reflection vectors of 
the point C

 k,,1i),C(vconv)C(V i  
(28)

are Schur stable.

2.4   Roots of Reflection Vectors

In this section we study the root placement of 
reflection vectors. It is useful for selecting a stable 
target simplex to solve the robust output control 
problem.

By definition, at least one root of a reflection 

vector )C(vi (i.e. root of   







 

1

)C(v
1zz)z(V i1k1

i  ) 

must lie on the unit circle, and the number of unit 
circle roots is determined by the number i of the 
reflection vector )C(vi  and the character of the roots 

(real or complex) is determined from the sign of the 

boundary reflection coefficient ).1r( V
i 

2.5   Robust Controller Design

A robust controller is to be designed such that the 
closed-loop characteristic polynomial is placed in 
the stable polytope (linear cover) of reflection vectors. 
It means that the following problems have to be 
solved:

1. choice of initial polynomial C(z-1) for generating 
the polytope V(C),
2. choice of k + 1 most suitable vertices of V(C) to 
build a target simplex S,
3. choice of a target polynomial E(z-1).
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In the following section some “thumb rules” are 
given for choosing a stable target simplex S.

To choose k + 1 vertices of the target simplex S
we use the well known fact that poles with positive 
real parts are preferred to those with negative ones 

[1]. The positive reflection vectors )C(vi
 with i odd 

and negative reflection vectors )C(vi
 with i even are 

chosen yielding k vertices. The (k+1)th vertex of the 
target simplex S is chosen as the mean of the 
remaining reflection vectors.

The target polynomial E(z-1) of order k is 
reasonable to be chosen inside the stable polytope of 
reflection vectors V(C). A common choice is          
E(z-1)=C(z-1).

For higher-order polynomials the size of the target 
simplex S is considerably less than the volume of the 
polytope of reflection vectors V. That is why the 
above quadratic programming method with a 
preselected target simplex S works only if 
uncertainties are sufficiently small. Otherwise it is 
reasonable to use some search procedure to find a 
robust controller such that the polytope of closed-loop 
characteristic polynomial is placed inside the stable 
polytope of reflection vectors V(C).

3 ILLUSTRATIVE EXAMPLES
Controller Design Verification via Reflection 

Coefficients

Consider the approximate model of a PUMA 762 
robotic disk grinding process [4]. From the results of 
identification and because of the nonlinearity of the 
robot, the coefficients of the numerator of the plant 
transfer function change for different positions of the 
robot arm:

.
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The main task is to design a robust discrete-time 
controller (3), υ=μ=3.

From the transfer function (29) and matrix form of (9) 
results
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Let us choose the initial polynomial C(z-1) for 
generating the polytope V(C) as follows

71]3.01[)(  zzC
(30)

with reflection coefficients:
,1.21 r ,98.12 r

,945.03 r ,2835.04 r ,051.05 r ,0051.06 r

.0002.07 r

Now we can find the reflection vectors )C(vi of 

the initial polynomial C(z-1) leading to the matrix 
form of the target simplex S (vertex polynomial 
coefficients)

.
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The discrete-time controller design task for the 
nominal transfer function (29) has been solved via 
quadratic programming taking α=0.1 in the cost 
function J (16).

For the selected target simplex S we have obtained 
the following discrete-time feedback controller

 
321

321
1

843.0788.1959.11
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
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
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
zzz

zzz
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(31)

with the control law

       
)3(17.0)2(24.2)1(86.1)(77.1

384.0279.1196.1 2222




kykykyky

kukukuku

(32)

Corresponding closed-loop step responses under 
the feedback controller (31) are in Fig.1.

Fig.1 – Closed-loop step responses under robust 
controller 
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4 CONCLUSIONS

The paper deals with the development of robust 
methods based on reflection vectors methodology for 
computation of control law coefficients guaranteeing
stability, robustness and high performance with 
respect to parameter uncertainties. Theoretical results
were verified on the examples for feedback and 
feedforward control structures. Proposed methods 
were tested for both stable and unstable processes.

The paper proposes theoretical principles and 
design methodology of robust discrete-time 
controllers for systems with parametric uncertainties.

The illustrative example presents known 
benchmark robotic problem was solved using 
quadratic programming for suitably defined cost 
function. Simulation results prove applicability of the 
proposed robust controller design theory for systems 
with parametric uncertainty. The proposed robust 
techniques present conservative solution without 
performance analysis. For better performance is 
necessary to prove different values of the matrix S 
and poles of initial polynomial C(z-1).    
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