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Abstract: In stochastic adaptive control, the controller that achieves required control
performance and keeps gathering information about the system at the same time,
is referred to as a controller with dual properties. As the optimal dual controller is
computationally intractable, approximations of the optimal problem are searched. In
this paper we propose a control strategy for ARX systems with dual properties. This
active control strategy is based on the well known cautious strategy, but takes the
quality of identification in one step ahead into consideration. This strategy shows how
to improve control performance mainly in cases when the initial uncertainty in system
parameters is large.
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1. INTRODUCTION

The goal of all control strategies is to achieve a
specified performance of the controlled system.
Usually, this performance is expressed in a form
of a criterion, which is to be minimized. When
evaluating the control strategy, it is necessary
to know the structure of the controlled system.
The better the knowledge is, the more effective is
the control strategy. However, if the knowledge is
poor, identification must be done prior to applying
control algorithms. In some cases, the knowledge
about the system is also improved during the
control process. Here, it must be ensured that
the system is sufficiently excited, so that the
dentification algorithm has enough relevant data
to improve the knowledge.

The control strategy that optimally solves the
problem of finding a tradeoff between control per-
formance and system identification is referred to
as dual control strategy. The optimality is meant
with respect to a given criterion. Unfortunately,

the complete dual problem is computationally in-
tractable even for simple systems. For this reason,
various approximative strategies were designed.
Filatov and Unbehauen (2004) describes the state
of the art in the field and defines the properties
that every dual controller must have. An overview
of dual control methods can be found in Wit-
tenmark (1995), Wittenmark (2002) and in the
analysis by Lindoff et al. (1999). In this paper
we propose a control strategy that is based on
a one-step approximative solution of the original
problem. It is based on the cautious controller de-
scribed in Peterka (1986) and Wittenmark (1995),
but takes into account the fact, that identification
takes place in the first step of control. For the rest
of the control process, cautious control is assumed.
With this assumption, the controller keeps the
dual property, as it optimizes the performance and
identification, while remaining computationally
feasible. The control strategy is derived for the
ARX models that are often used to model stochas-
tic systems (Åström and Wittenmark (1997)).
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In the next section we describe in detail the N-
step cautious control strategy for a general linear
stochastic system. In section 3, we describe the
idea of the one-step active strategy. In section 4,
the general ideas are applied to the ARX model
of stochastic system. Section 5 contains some
simulation experiments.

2. CAUTIOUS CONTROLLER

In this section we will first describe the cautious
controller for a general linear stochastic system
and then use it to derive the one-step active
controller in the next section. We will consider
the following stochastic system:

x(k + 1) = Akx(k) + Bku(k) + Ev(k) (1)

y(k) = Ckx(k) + Dku(k) + e(k),

where the noise vectors v(k) and e(k) are mutually
independent white sequences with zero mean and
covariances Pv and Pe, respectively. We assume
perfect state information, i.e. the state x(k) is per-
fectly known to us at time k. We also assume the
system matrices to be constant linear functions of
some parameter vector θk, i.e.

Ak = A(θk), Bk = B(θk), (2)

Ck = C(θk),Dk = D(θk),

where θk is a random vector. This will allow us
to treat the uncertainty in system parameters in
a compact way, since the system at time k now
depends only on the value of the random vector
θk.

Our goal is to find a control sequence, which will
be denoted u∗(1), . . . , u∗(N), that minimizes the
criterion

JN
1 = E

{
N∑

k=1

yT (k)Qy(k)+ (3)

+ uT (k)Ru(k)|x(1), u(1), . . . , u(N)
}

,

where the symbol E {·} denotes the expected
value with respect to all random variables, which
in this case are the unknown future outputs
y(1), . . . , y(N). Q and R are constant positive def-
inite weighting matrices that are used for tuning
the controller. Generally, also time-varying matri-
ces Qk, Rk can be used and modification of all
presented algorithms to this case is straightfor-
ward.

We will first assume the parameter vectors θk,
k = 1, . . . , N to be independent, identically dis-
tributed (i.i.d.) random vectors with mean θ̂ and

covariance Pθ. This means that at every time
instant k, the system matrices are i.i.d. random
matrices. This assumption, however unrealistic,
allows us to derive an optimal linear feedback
control law, that is called the cautious control law.

The optimal value of criterion (3) depends on the
initial state x(1). More generally, let us denote the
optimal value of criterion (3) as

J∗k (x(k)) = min
u(k),...,u(N)

JN
k , (4)

where the initial time is k and we omit the
final time N for convenience of notation, as it
remains the same in all cases. Since the criterion
is additive, we can write the Bellman equation for
the optimal control at time k,

J∗k (x(k)) = min
u(k)

E
x(k+1),y(k)

{
yT (k)Qy(k)+ (5)

+ uT (k)Ru(k) + J∗k+1(x(k + 1))|u(k), x(k)
}

,

and then use the dynamic programming algorithm
to derive the solution (Bertsekas (2005)).

Recall that we assume perfect state information,
so the state x(k) is known at time k. Also the
optimal criterion value at time k+1 depends only
on the state x(k+1) and so the only uncertainties
are in the output y(k) and state x(k + 1). After
substitution from (1) and recalling notation (2),
equation (5) becomes

J∗k (x(k)) = min
u(k)

E
θk,e(k),v(k)

{
xT (k)Ck

T QCkx(k)

+2xT (k)Ck
T QDku(k) + (6)

+uT (k)[R + DT
k QDk]u(k) +

+eT (k)(·) + eT (k)Qe(k) +

+ J∗k+1(Akx(k) + Bku(k) + Ev(k))|u(k), x(k)
}

,

It will be shown by induction that the optimal
criterion value at time k can be written as a
quadratic form of the state x(k) plus a constant
term, i.e.

J∗k (x(k)) = xT (k)Gkx(k) + gk (7)

for some matrix Gk and a scalar gk. It is obviously
true for time N + 1, as J∗N+1(x(N + 1)) = 0, i.e.
GN+1 = 0 (zero matrix) and gN+1 = 0. If we
assume that (7) is true for time k + 1, we can
substitute this expression into (6) and get the
following equation for optimal criterion value at
time k
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J∗k (x(k)) = min
u(k)

E
θk,e(k),v(k)

{
xT (k)Ck

T QCkx(k)

+2xT (k)Ck
T QDku(k) + (8)

+uT (k)[R + DT
k QDk]u(k) + eT (k)(·) +

+eT (k)Qe(k) + [Akx(k) + Bku(k) + Ev(k)]T ×
× Gk+1[Akx(k) + Bku(k) + Ev(k)]|u(k), x(k)} ,

and using linearity of the E{·} and facts that

E{e(k)} = E v(k) = 0,

E{eT (k)Qe(k)} = tr {PeQ}

and

E{vT (k)ET Gk+1Ev(k)} = tr {PvET Gk+1E},

where tr {·} denotes the trace operator, we get to

J∗k (x(k)) = min
u(k)

{
xT (k)× (9)

× E
θk

{
Ck

T QCk + Ak
T Gk+1Ak

}
x(k) +

+2xT (k) E
θk

{
Ck

T QDk + Ak
T Gk+1Bk

}
u(k) +

+uT (k) E
θk

{
R + DT

k QDk + Bk
T Gk+1Bk

}
u(k) +

+ tr {PeQ}+ tr {PvET Gk+1E}+ gk+1

}

By minimizing this expression with respect to
u(k), we get to the following expression for op-
timal control at time k

u∗(k) =− E
θk

{
R + DT

k QDk + Bk
T Gk+1Bk

}−1 ×

× E
θk

{
Dk

T QCk + Bk
T Gk+1Ak

}
x(k), (10)

which is a linear function of the system state
x(k) expressed in a closed form. Substituting (10)
back into (9), we get the recursive formulas for
matrix Gk and scalar gk, which also completes the
induction, as we have expressed the optimal value
J∗k (x(k)) in a required form (7).

Gk = E
θk

{
Ck

T QCk + Ak
T Gk+1Ak

}
− (11)

− E
θk

{
Ck

T QDk + Ak
T Gk+1Bk

}
×

× E
θk

{
R + DT

k QDk + Bk
T Gk+1Bk

}−1 ×

× E
θk

{
Dk

T QCk + Bk
T Gk+1Ak

}

gk = tr
{
PeQ + PvE

T Gk+1E
}

+ gk+1

Note that random vectors θk are i.i.d. for all
k = 1, . . . , N and so the means of expressions in
(11) and (10) are the same for all k = 1, . . . , N .

3. ONE-STEP ACTIVE CONTROLLER

The drawback of the cautious control strategy is
the fact that the same distribution of parameter
vector θk is assumed during the whole control
process, i.e. for k = 1, . . . , N . In fact, we can
expect some improvement of the knowledge about
the system, expressed by the change of the co-
variance matrix Pθ. This approach leads us to
a strategy that actively improves the knowledge
about the system. For this reason, we will now use
the notation θ̂k and Pθk

for means and covariances
of vectors θk.

In the case of cautious control, the optimal cri-
terion value at time k is a function of the state
x(k) given by (7). The matrix of the quadratic
form is given by (11). In this equation we notice
that means of products of random variables are
to be evaluated. This indicates that the resulting
matrix Gk and therefore also the optimal criterion
value J∗k (x(k)) depend on the second moments of
θk, i.e. on the covariance matrix Pθk

. In the case of
cautious controller we could omit this dependence,
because we assumed Pθk

to be a constant matrix
for all k = 1, . . . , N . However, if we take into
account the influence of the input u(k) on Pθk+1

at time k+1, i.e. Pθk+1 = Pθk+1(u(k)), we have to
consider the matrix Gk+1 to be a function of u(k),
i.e. Gk+1 = Gk+1(u(k)) and consequently also the
criterion J∗k+1(x(k + 1)) = J∗k+1(x(k + 1), u(k)).
The Bellman equation (5) still holds, but it will
now take the form

J∗k (x(k)) = min
u(k)

E
x(k+1),y(k)

{
yT (k)Qy(k)+ (12)

+ uT (k)Ru(k) +

+ J∗k+1(x(k + 1), u(k))|u(k), x(k)
}

,

In the one-step active control strategy, we assume
that the covariance matrix Pθ is changed only
after the first step of control and that cautious
strategy is applied on the rest of the horizon.
Under this assumption, it is possible to evaluate
the criterion value J∗k+1(x(k + 1), u(k)), provided
we know, how the input u(k) changes the covari-
ance Pθk

in the next step, i.e. the transition from
Pθk

to Pθk+1 is expressed as a function of u(k).
This influence is known for the ARX model of
a stochastic system, where the parameters can
be estimated using the appropriate form of the
Kalman filter (Anderson and Moore (2005)). The
minimization, however, does not lead to a closed
form functions of the state x(k), as in the case of
cautious controller. However, it can be performed
numerically, and because the optimal input for
cautious control strategy is known, the optimiza-
tion can be started at this point. This guarantees
that the optimal solution of (12) is not worse than
the cautious control.
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4. ACTIVE CONTROL STRATEGY FOR
ARX MODELS

In this section we apply the general principles
described in the previous section to the AutoRe-
gressive model with eXternal input (ARX) that is
described by equation

y(k) = zT (k)θk + e(k), (13)

where y(k), u(k) are the output and the input of
the system, regressor

z(k) = [u(k), y(k−1), u(k−1), . . . , y(k−n), u(k−n)]T

and

θk =
[
b0, a1, b1, a2, . . . , an, bn

]T

is the vector of parameters. The noise e(k) is a
gaussian white sequence, e(k) ∼ N (0, σ2

e). For
such systems a nonminimal state representation
exists, where the state vector consists of delayed
inputs and outputs,

x(k) = [y(k− 1), u(k− 1), . . . , y(k− n), u(k− n)],

and so the state vector is directly measurable.

The matrices of the state space description are

A(θk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,k b1,k . . . bn−1,k an,k bn,k

0 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . .
0 0 . . . 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B(θk) =
[
b0,k 1 0 . . . 0

]T
,

E =
[
1 0 . . . 0

]T
,

C(θk) =
[
a1,k b1,k . . . an,k bn,k

]
,

D(θk) = b0,k.

and finally

e(k) = v(k).

We can see that θk =
[
b0 C

]T . Because pa-
rameter b0 plays a special role in the algorithm,
let us also denote the expected value θ̂k and the
submatrices of Pθk

as

θ̂k =

[
b̂0,k

Ĉk

]
, Pθk

=
[

σ2
b0,k Pb0C,k

PCb0,k PC,k

]
. (14)

We will also denote the means

Âk = A(θ̂k), B̂k = B(θ̂k), (15)

Ĉk = C(θ̂k), D̂k = D(θ̂k),

Finally, we choose Q = 1 without loss of general-
ity, because in the case of SISO system it is the
ratio R/Q that determines uniquely the criterion.
The results of the previous section applied to this
ARX system have the following form:

u∗(k) = − lT (k)
α(k)

x(k), (16)

Gk = ĈT
k Ĉk + PC,k + ÂT

k Gk+1Âk + (17)

G11,k+1PC,k −
l(k)lT (k)

α(k)
,

gk = gk+1 + σ2
e (1 + G11,k+1) , (18)

where the vector l(k) equals

l(k) = ĈT
k b̂0,k + PCb0,k +

+ ÂT
k Gk+1B̂k + PCb0,kG11,k+1

and the scalar α(k) equals

α(k) = R + b̂2
0,k + σ2

b0,k +

+ G11,k+1

(
b̂2
0,k + σ2

b0,k

)
+

+ 2b̂0,kG12,k+1 + G22,k+1.

The notation Gij,k denotes the element in i-th row
and j-th column of the matrix Gk at time k.

Recall that cautious control leads to a criterion
value expressed in (7) and therefore we now have
equations to evaluate the criterion value J∗k+1 for
a given Pθk+1 :

J∗k+1(x(k + 1), u(k)) = (19)

= xT (k + 1)Gk+1(Pθk+1)x(k + 1) + gk+1

To find the value of Pθk+1 for a given uk and
Pθk

, we will use the Kalman filter for recursive
estimation of parameters of ARX model:

θ̂k+1 = θ̂k +
Pθk

z(k)
σ2

e + zT (k)Pθk
z(k)

[y(k)− zT (k)θ̂k],

(20)

which implies

E
y(k)

{θ̂k+1} = θ̂k (21)

and for covariance matrix

Pθk+1 = Pθk
− Pθk

z(k)zT (k)Pθk

σ2
e + zT (k)Pθk

z(k)
. (22)

Putting together equations (12), (19), (17), (18)
and (22) we can now evaluate the input u(1),
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Fig. 1. The dependence of the optimal criterion
value J∗ on the parameter variance σ2

b for
cautious and active control strategy.
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Fig. 2. Input to a controlled process with b = 25,
while b̂ = 10 and σ2

b = 103 is assumed.
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Fig. 3. The estimate of the system gain for b = 25,
while b̂ = 10 and σ2

b = 103 is assumed.

i.e.the first step of the active strategy by mini-
mizing (12). Note that at time k = 1, everything
needed for the minimization is known, as the
value of J∗k+1 = J∗2 is computed according to
the assumption of cautious control. The inputs
u(2), . . . , u(N) are then computed according to
(16), because it is assumed that for these steps
the cautious control strategy is used.
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Fig. 4. Measured criterion values according to the
real value of gain b, while b̂ = 10 and σ2

b = 103

is assumed.
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Fig. 5. Output of a controlled process with b = 25,
while b̂ = 10 and σ2

b = 103 is assumed.
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5. SIMULATION EXPERIMENTS

In this section we present simulation experiments
performed for the discrete integrator with un-
known gain on the input:

y(k) = y(k − 1) + bu(k) + e(k) (23)

17th International Conference on Process Control 2009
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The following values are assumed:

b̂ = 10, σ2
e = 1, σ2

b ∈ [1, 105]. (24)

The further settings are used: the number of steps
for computing the criterion (the control horizon)
N = 10, the weighting factor R = 1 and the initial
condition y(0) = 10.

Figure 1 shows the optimal criterion values com-
puted for the system (23) on the horizon of N =
10 steps. It compares the values of criterion for
cautious and active control strategy. It can be seen
that the highest difference is around the variance
σ2

b = 4 · 103 and that for high uncertainty, the
benefit of using active strategy disappears.

For the next experiment, both control strategies
(cautious and active) are applied on the system
(23) in the following way. In each step of control k,
the optimal input sequence over the whole horizon
N = 10 is computed. Then only the first input
u∗(k) is applied and after the real output y(k)
is measured, the knowledge about parameter b is
updated in terms of expressions (20) and (22).
In the next step k + 1 the whole new control
sequence is computed based on this improved
knowledge. This makes it possible to see that
the active strategy takes the identification process
into account. The control process is simulated for
K = 10 steps of control.

Figure 4 shows the dependence of the real (mea-
sured) criterion value on the real gain b. The
values of parameter b are chosen in the interval
[−80, 100]. Other settings are chosen as in (24),
with σ2

b = 103. To reduce the influence of the noise
e on the result, the control process is simulated
10 times for each parameter value from interval
[−80, 100] and the average of the criterion is taken.

Figure 2 and Figure 5 show an example of the
control process with b = 25. The graph shows that
the active strategy starts with a greater (absolute)
value of control signal than the cautious one. This
leads to faster parameter identification as well as
faster decrease of the uncertainty expressed by σ2

b ,
as can be seen in Figure 3 and Figure 6.

6. CONCLUSIONS

In this paper an adaptive control strategy is pre-
sented that shows the dual properties, while keep-
ing computational feasibility. This active strategy
is based on the cautious control strategy and
assumes that uncertainty in system parameters
is reduced after the first step of the control pro-
cess. The theoretical values of the criterion show,
that the active strategy brings the biggest benefit
when the initial parameter uncertainty is high.

The control process of the active strategy is sim-
ulated and compared with the cautious strategy.
Experiments show that using the active strategy
leads to faster parameter identification than in the
case of cautious strategy. However, after several
steps of control, both strategies give very similar
results. The experiments were performed on a
discrete integrator with unknown gain, so only one
parameter was estimated and quick convergence
was expectable.

As the next step, we plan to extend this one-
step algorithm to a general N -step strategy, which
would take into account the change of parameter
knowledge in the course of N future steps of
control. Thus we would come to a combination of
predictive and LQ control for uncertain systems.
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