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Nonlinear Control of a Chemical Reactor 
 

P. Dostál, V. Bobál, J. Vojtěšek 
 

Tomas Bata University in Zlin, Faculty of Applied Informatics 
nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic 
 (Tel: +420 57 6035195; e-mail:dostalp@ fai.utb.cz). 

Abstract: The paper deals with continuous-time nonlinear adaptive control of a continuous stirred tank 
reactor. The control strategy is based on an application of the controller consisting of a linear and 
nonlinear part. The static nonlinear part is derived in the way of a inversion and consecutive polynomial 
approximation of a measured or simulated input-output data. The design of the dynamic linear part is 
based on approximation of nonlinear elements in the control loop by a continuous-time external linear 
model with parameters estimated using a corresponding delta model. In the control design procedure, the 
polynomial approach with the pole assignment method is used. The nonlinear adaptive control is tested 
by simulations on the nonlinear model of the CSTR  with a consecutive exothermic reaction. 

 
 

1. INTRODUCTION 

Continuous stirred tank reactors (CSTRs) are units frequently 
used in chemical and biochemical industry. From the system 
theory point of view, CSTRs belong to a class of nonlinear 
systems. Their mathematical models are described by sets of 
nonlinear differential equations. Their models are derived and 
described in e.g. Ogunnaike and Ray (1994), Schmidt (2005) 
and Corriou (2004).  

It is well known that the control of chemical reactors often 
represents very complex problem. The control problems are 
due to the process nonlinearity and high sensitivity of the 
state and output variables to input changes. In addition, the 
dynamic characteristics may exhibit a varying sign of the 
gain in various operating points as well as non-minimum 
phase behaviour. Evidently, the process with such properties 
is hardly controllable by conventional control methods, and, 
its effective control requires application some of advanced 
methods.  

One possible method to cope with this problem exploits a 
linear adaptive controller with parameters computed and 
readjusted on the basis of recursively estimated parameters of 
an appropriate chosen continuous-time external linear model 
(CT ELM) of the process. Some results obtained by this 
method can be found in e.g. Dostál et al. (2007) and Dostál et 
al. (2009). 

An effective approach to the control of CSTRs and similar 
processes utilizes various methods of the nonlinear control 
(NC). Several modifications of the NC theory are described  
in e.g. Astolfi et al. (2008), Vincent and Grantham (1997), 
Ioannou and Fidan (2006) or Zhang et al. (2000).  Especially, 
a large class of the NC methods exploits linearization of 
nonlinear plants, e.g. Huba and Ondera (2009), an application 
of PID controllers, e.g. Tan et al. (2002), Bányász and 
Keviczky (2002) or  factorization of nonlinear models of the 
plants on linear and nonlinear parts, e.g. Nakamura et al. 

(2002), Vallery et al. (2009) and Chyi-Tsong Chen1 et al. 
(2006). 

In this paper, the CSTR control strategy is based on an 
application of the controller consisting of a static nonlinear 
part (SNP) and dynamic linear part (DLP). The static 
nonlinear part is obtained from simulated or measured 
steady-state characteristic of the CSTR, its inversion, 
polynomial approximation, and, subsequently, its 
differentiation. On behalf of development of the linear part, 
the SNP including the nonlinear model of the CSTR are 
approximated by a CT external linear model. For the CT 
ELM parameter estimation, an external delta model with the 
same structure as the CT model is used (see, e.g. 
Mukhopadhyay et al. (1992), Goodwin et al. (2001) and 
Stericker and Sinha (1993)). Then, the resulting CT controller 
is derived using the polynomial approach and pole 
assignment method, e.g. Kučera (1993). The simulations are 
performed on a nonlinear model of the CSTR with a 
consecutive exothermic reaction. 

2. MODEL OF THE CSTR 

Consider a CSTR with the first order consecutive exothermic 
reaction according to the scheme A B Ck k1 2⎯ →⎯ ⎯ →⎯  and 
with a perfectly mixed cooling jacket. Using the usual 
simplifications, the model of the CSTR is described by four 
nonlinear differential equations 

 1
A r r

A A f
r r

d c q q
k c c

dt V V
⎛ ⎞

= − + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (1) 

 2 1
B r r
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r r

d c q qk c k c c
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⎛ ⎞
= − + + +⎜ ⎟
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 ( ) ( )
( )

c c h
cf c r c

c c p c

dT q A UT T T T
dt V V c

= − + −
ρ

 (4) 

with initial conditions (0) s
A Ac c= , (0) s

B Bc c= , 

(0) s
r rT T= and (0) s

c cT T= . Here, t is the time, c are 
concentrations, T are temperatures, V are volumes, ρ are 
densities, cp are specific heat capacities, q are volumetric 
flow rates, Ah is the heat exchange surface area and U is the 
heat transfer coefficient. The subscripts are denoted (.)r for 
the reactant mixture, (.)c for the coolant, (.)f  for feed (inlet) 
values and the superscript (.)s for steady-state values. The 
reaction rates and the reaction heat are expressed as 

 2,1,exp0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= j

TR
E

kk
r

j
jj  (5) 

 BAr ckhckhh 2211 +=  (6) 
 
where k0 are pre-exponential factors, E are activation energies 
and h are reaction entalpies. The values of all parameters, 
feed values and steady-state values are given in Table 1.  

 

Table 1. Parameters, inlet values and initial conditions. 

Vr = 1.2 m3 
Vc = 0.64 m3 
ρr = 985 kg m-3 
ρc = 998 kg m-3 

cpr = 4.05 kJ kg-1K-1 
cpc = 4.18 kJ kg-1K-1 
Ah = 5.5 m2 
U = 43.5 kJ m-2min-1K-1 

k10 = 5.616 . 1016 min-1 
k20 = 1.128 . 1018 min-1 
h1 = 4.8 . 104 kJ kmol-1 

E1/ R = 13477 K 
E2/ R = 15290 K 
h2 = 2.2 . 104 kJ kmol-1 

s
Afc  = 2.85 kmol m-3 
s

rfT  = 323 K 
s
rq  = 0.08 m3min-1 

s
Bfc = 0 kmol m-3 
s

cfT = 293 K 
s
cq  = 0.08 m3min-1 

s
Ac  = 1.5796 kmol m-3 
s

rT  = 324.80 K 

s
Bc  = 1.1975 kmol m-3 
s

cT  = 306.28 K 

 

In term of the practice, only the coolant flow rate can be 
taken into account as the control input. As the controlled 
output, the reactant temperature is considered. For the control 
purposes, the control input and the controlled output are 
defined as deviations from steady values 

 ( ) ( ) s
c cu t q t q= − ,  ( ) ( ) s

r ry t T t T= −  (7) 
 
The dependence of the reactant temperature on the coolant 
flow rate in the steady-state is in Fig.1.  

In subsequent control simulations, the operating interval for 
qc has been determined as 

 min max( )c c cq q t q≤ ≤  (8) 
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qc min

Tr min

 

 
Fig. 1. Dependence of the reactant temperature on the coolant  
           flow rate in the steady-state. 

3. CONTROLLER DESIGN 

As previously introduced,  the controller consist of a static 
nonlinear part and a dynamic linear part as shown in Fig. 2. 

 

CONTROLLER 
 e u0 u

SNP DLP

 
Fig. 2. The controller scheme. 

The DLP creates a linear dynamic relation between the 
tracking error e(t) and 0 ( ) ( )r wu t T t= Δ  which represents a 

difference of the reactant temperature adequate to its desired 
value. Evidently, for a well proposed SNP, the limit relation 

0lim ( )
t

u t w
→∞

=  holds.   

Then, the SNP generates a static nonlinear relation betveen u0 
and a corresponding increment (decrement) of the coolant 
flow rate.  

3.1  Nonlinear part of the controller 

The SNP derivation appears from a simulated or measured 
steady-state charasteristics. From the purposes of a later 
polynomial approximation, the coordinates on the graph axis 
are defined as 

 
s
c cL

cL

q q
q
−θ = ,  s

r rLT Tξ = − . (9) 

where cLq  is the lower bound in the interval  

 s
cL c cUq q q≤ ≤  (10) 

 and, rLT is the temperature corresponding to cUq . 

It can be recommended to select the interval (10) slightly 
longer than (8). In this paper, lower and upper values in (8) 
and (10) were chosen min max0.016, 0.02, 0.12cL c cq q q= = =  

and 0.13.cUq =  
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In term of the practice, it can be supposed that the measured 
data will be affected by measurement errors. The simulated 
steady-state characteristic that corresponds to reality is shown 
in Fig. 3. 

0 1 2 3 4 5 6 7

0
5

10
15
20
25
30
35
40

ξ 
(K

)

θ (1)
 

Fig. 3. Simulated characteristics ξ = f (θ). 

Making the replacement of coordinates, the inverse of this 
characteristic can be approximated by a polynomial in the 
general form 

 1
0 1 1... n n

n na a a a−
−θ = + ξ + + ξ + ξ . (11) 

The inverse characteristic accordant with Fig. 3 together with 
the fourth order approximate polynomial is in Fig. 4. 

0 5 10 15 20 25 30 35 40

0
1
2
3
4
5
6
7

θ =6.25677- 0.55753 ξ+0.03418 ξ2- 0.00106 ξ3+1.15342E-5 ξ4

 Simulated (measured] values
 Polynomial approximation

θ 
(1

)

ξ (K)  
Fig. 4. Simulated and approximated inverse relation   
           ( )fθ = ξ . 

Now, a difference of the coolant flow rate ( ) ( )cu t q t= Δ  in 
the output of the SNP can be computed for each rT as 

 0
( )

( ) ( ) ( )
r

c cL
T

d
u t q t q u t

d ξ

θ
= Δ =

ξ
 (12) 

The derivative of the approximate polynomial is in Fig. 5. 

3.2  CT external linear model of nonlinear elements 

A structure of the CT ELM of the SNP in conjuction with the 
CSTR nonlinear model was chosen on the basis of step 
responses simulated in a neighbourhood of the operating 
point. The step responses for some step changes of u0 are 
shown in Fig. 6. For all responses, the gain of the 

SNP+CSTR system has been computed as 
0

( )lims t

y tg
u→∞

= . 
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-0.5

-0.4

-0.3

-0.2

-0.1

0.0

d θ / d ξ = - 0.55753 + 0.06836 ξ - 0.00318 ξ2+ 4.61375E-5 ξ3

dθ
 / 

dξ
 (1

/ K
)

ξ (K)  
Fig. 5.  Derivative of θ with respect to ξ. 
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Fig. 6. Step responses of the SNP+CSTR. 

Taking into account profiles of curves in Fig. 6 with zero 
derivatives for t = 0, the second order CT ELM has been 
chosen in the form of the second order linear differential 
equation 

 1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (13) 

or, in the transfer function representation as 

 0
2

0 1 0

( )( )
( )

bY sG s
U s s a s a

= =
+ +

. (14) 

3.3  Delta external linear model 

Establishing the δ operator 

 
0

1q
T
−δ =  (15) 

where q is the forward shift operator and T0 is the sampling 
period, the delta ELM corresponding to (13) takes the form 

 2
1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t′ ′ ′ ′ ′ ′ ′δ + δ + =  (16) 

where t′ is the discrete time. 

When the sampling period is shortened, the delta operator 
approaches the derivative operator, and, the estimated 
parameters ,a b′ ′  of  (16) reach the parameters a, b of the CT 
model (13) as proved in e.g. Stericker and Sinha (1993).  

Substituting 2t k′ = − , equation (16) may be rewriten to the 
form 

 2
1 0 0 0( 2) ( 2) ( 2) ( 2)y k a y k a y k b u k′ ′ ′δ − + δ − + − = − .(17) 
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3.4  Delta model parameter estimation 

Establishing the regression vector 

 ( )0( 1) ( 2) ( 2) ( 2)T k y k y k u kδ − = δ − − −Φ  (18) 

where  

 
0

( 1) ( 2)( 2) y k y ky k
T

− − −δ − =   (19) 

then, the vector of delta model parameters 

 ( )1 0 0( )T k a a bδ ′ ′ ′=Θ  (20) 

is recursively estimated from the ARX model 

 2 ( 2) ( ) ( 1) ( )Ty k k k kδ δδ − = − + εΘ Φ  (21) 
where 

 2
2

0

( ) 2 ( 1) ( 2)( 2) y k y k y ky k
T

− − + −δ − = . (22) 

The recursive estimation of delta model parameters was 
performed with the sampling interval T0 = 0.2 min. Here, the 
recursive identification method with exponential and 
directional forgetting according to Rao and Unbehauen 
(2005) and Bobál et al. (2005) was used. 

3.5 Linear part of the controller 

The DLP is inserted into the control loop according to Fig. 7. 

 u0 

- 

 y 

 v 

 e  w 
 DLP CT ELM 

 
Fig. 7. Simplified scheme of the control loop. 

In the scheme, w is the reference signal, v is the disturbance, 
y is the controlled output and u0 is the input to the CT ELM. 
The transfer function G of the CT ELM is given by (14). 
Both the reference w and the disturbance v are considered to 
be step functions with transforms  

 
s

w
sW 0)( = ,  

s
v

sV 0)( =  (23) 

The transfer function of the DLP is in the form 

 0 ( ) ( )( )
( ) ( )

U s q sQ s
E s p s

= =  (24) 

where q and p are polynomials in s, and, deg degq p≤ . 

The controller design described in this section stems from the 
polynomial approach. General conditions required to govern 
the control system properties are formulated as strong 
stability (in addition to the control system stability, also the 
stability of  controllers is required), internal properness, 
asymptotic tracking of a step reference and step disturbance 
attenuation. 

It is well known from the algebraic control theory that a 
controller which satisfies above requirements is in the 
polynomial ring given by a solution of the polynomial 
(Diophantine) equation 

 ( ) ( ) ( ) ( ) ( )a s p s b s q s d s+ =  (25) 
with a stable polynomial d(s) on the right side. 

For step input signals w and v, the polynomial p is in the form  

 ( ) ( )p s s p s= . (26) 
The degrees of unknown polynomials in (25) and (26) are 

deg degq a= ,  deg deg 1p a= − ,  deg 2degd a= . 
Then, for the ELM (14), the controller transfer function takes 
the form 

 
2

2 1 0

0

( )( )
( ) ( )

q s q s qq sQ s
s p s s s p

+ += =
+

 (27) 

In this paper, the polynomial d with roots determining the 
closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s= + α  (28) 
where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (29) 

and α is the selectable parameter that can usually be chosen 
by way of simulation experiments. 

Note that a choice of d in the form (28) provides the control 
of a good quality for aperiodic controlled processes.  

The polynomial n has the form 

 2
1 0( )n s s n s n= + +  (30) 

with coefficients 

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + − . (31) 

The controller parameters can be obtained from solution of 
the matrix equation 

 1 0

0 0

0

1 0 0 0
0 0

0 0
0 0 0

a b
a b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Ω

0

2

1

0

p
q
q
q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

3 1

2 0

1

0

d a
d a

d
d

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (32) 

where 

 
2

3 1 2 1 0
2 2

1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

= + α = α + + α

= α + α = α
. (33) 

Evidently, the controller parameters can be adjusted by the 
selectable parameter α. The complete adaptive control system 
is shown in Fig. 8. 

4. CONTROL SIMULATIONS 

The control simulations were performed in a neighbourhood 
of the operating point ( s

cq  = 0.08 m3min-1, s
rT  = 324.8 K).  
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Fig. 8. Scheme of the nonlinear adaptive control. 
 
For the start (the adaptation phase), a P controller with a 
small gain was used in all simulations. 

The effect of the pole α on the control responses is 
transparent from Figs. 9, 10 and 11. Here, on the basis of 
precomputed simulations, two  values of α were selected. The 
control results show sensitivity of the controlled output and 
the input signals to α. Obviously, careless selection of this 
parameter can lead to controlled output responses of a poor 
quality or even to unstability.  Further, a increasing α leads to 
higher values and changes of the input signals. 
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Fig. 9. Nonlinear adaptive control: Controlled output  
           responses. 
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Fig. 10. Nonlinear adaptive control: Input signal to the SNP. 
 
Evolution of the DLP parameters during control is shown in 
Fig. 12. 

A presence of the integrating part in the DLP enables 
rejection of various step disturbances entering into the 
process. Here, step disturbances 30.1kmol mA fc −Δ = ±  at 

times 1 250 minvt =  and 2 550 minvt =  were  injected into 
the CSTR. The DLP parameters were estimated only in the 

first (tracking)  interval   t < 200 min.  The experiences of 
authors of this paper proved that an utilization of recursive 
identification using the delta model in the phase of a constant 
reference and in a presence of step disturbances decreases the 
control quality. From this reason, during   interval   t ≥ 200 
min, fixed DLP parameters were used. The controlled output 
responses are shown in Fig. 13. 
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Fig. 11. Nonlinear adaptive control: Input to the CSTR. 
 

0 200 400 600 800 1000 1200
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

p0 100q0
5q1

C
on

tro
lle

r p
ar

am
et

er
s

t (min)

q2

 

 
Fig. 12. Evolution of the DLP parameters during control. 
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Fig. 13. Nonlinear adaptive control: Step disturbances  
            rejection. 
 
An influence of the SNP is evident from the control response 
shown in Fig. 14. Here, the standard adaptive control without 
the nonlinear part of the controller was used.  The simulation 
has been performed under the same conditions as by above 
presented cases. A confrontation with responses in Fig. 9 
shows that an application of the nonlinear control is suitable 
especially for greater changes of the reference signal. 
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 Fig. 14. Adaptive control without the SNP. 
 

5. CONCLUSIONS 

In this paper, one approach to the nonlinear continuous-time 
adaptive control of the reactant temperature in a continuous 
stirred  tank reactor   was  proposed.  The  control  strategy  is  
based on a factorization of a controller into the linear and the 
nonlinear part. A design of the controller nonlinear part 
employs simulated or measured steady-state characteristics of 
the process and their additional modifications. Then, the 
system consisting of the controller nonlinear part and a 
nonlinear model of the CSTR is approximeted by a 
continuous time external linear model with parameters 
obtained through recursive parameter estimation of a 
corresponding delta model. The resulting continuous-time 
controller linear part is derived using the polynomial 
approach and given by a solution of a polynomial equation. 
Tuning of its parameters is possible via closed-loop pole 
assignment. The presented method has been tested by 
computer simulation on the nonlinear model of the CSTR 
with a consecutive exothermic reaction. Simulation results 
demonstrated an applicability of the presented control 
strategy and its usefulness especially for greater changes of 
input signals in strongly nonlinear regions. It can be expected 
that the described control strategy is also suitable for other 
similar technological processes such as tubular chemical 
reactors. 
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