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Abstract: Paper deals with different techniques of nonlinear reactor furnace control. The first part briefly 
describes the real system (reactor furnace), which is a nonlinear system because of different heat transport 
mechanisms. Then different approaches to the system control are described. Firstly standard technique using PID 
controller, and secondly two predictive control strategies (Generalized Predictive Controller and Neural Network 
Predictive Controller). 

 
 
 

1.   INTRODUCTION 
 

Different techniques of the reactor furnace control are 
described and compared in the paper.  

Furnace is made for chemical reactor heating. The reactor 
provides measurements of oxidation and reduction qualities 
of catalyzers in the different temperatures. It is necessary to 
consider a nonlinear furnace behavior, because of huge 
range of reactor temperature (Dušek, et all.,1997). 
 

2.   REACTOR FURNACE DESCRIPTION 
 
The furnace base is a cored cylinder made of insulative 
material.  On the inner surface there are two heating spirals. 
Spirals are powered by the voltage 230 V. In the middle of 
the cylinder there is a reactor. The reactor temperature is 
measured by one platinum thermometer (see Figure 1).  

The system is a thermal process with two inputs (spiral 
power and ambient temperature) and one output (reactor 
temperature). Thus, controlled variable is the reactor 
temperature and manipulated variable is spiral power, 
ambient temperature is measured error. 

Nonlinearity of the system is caused by heat transfer 
mechanism. 

 When the temperature is low, heat transfer is provided 
only by conduction. However, when the temperature is 
high, radiation presents an important transfer principle. 

 

 
Fig. 1. Reactor furnace chart  

 
Nonlinear mathematical model (set of four differential 
equations) and its linearization is described in (Mareš et 
all., 2009) and (Mareš et all., 2010a). 

 
3.   PID CONTROL 

 
The first approach how to control the reactor furnace is the 
simplest way – PID control, where gain and time constants 
were set according to T. method, more in (Kuhn, 1995). 
The method gives the PID control response slow but very 
robustness. Even nonlinear systems are possible to control 
quite satisfactorily. 

The only necessity for the controller parameters estimation 
is to measure the step response of the system. Then we can 
calculate gain and parameter T., see figure 2 and equation 
(1). Constants of the controller are calculated from these 
parameters, according to table 1. 
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Fig. 2. T method principle 
 
Table 1 – PID parameters calculation 

 r0 TI TD 
PI 0,5/Z 0,5.T 0 

PID 1/Z 0,66.T 0,167.T 
 

The step response was measured (step of the spiral power 0 
– 100 W) and the PI controller parameters were estimated, 
table 2. 
 
Table 2 – PI controller setting 

 r0 TI TD 
PI 3,38 223 0 

 
The control experiment was realized at the system. Results 
are shown in figure 3, where the first chart shows the 
manipulated variable, the second chart shows the set point 
and controlled variable and the third chart shows the error 
between set point and controlled variable.    
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Fig. 3.PID control 
 

4.   GENERALIZED PREDICTIVE CONTROL 
 
Generalized Predictive Control (GPC) belongs to the group 
of complex predictive controllers where model is needed. 
We assume the model in the form of equation (2). 


  )()()1()()()( 111 kezCkuzBkyzA     (2) 

where A, B, C are polynomials, y (k) is model output, u (k) 
is model input e (k) is output error and Δ is described by 
Δ= 1-z -1. It is possible to convert (2) to the form of 
equation (3) 
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where AA . . 

The model is used for the calculation of the future output 
prediction. There are several different methods how to 
calculate it. One of the simplest ways (using the inverse 
matrix) is described in this chapter.  

 The prediction of N steps is possible to rewrite by the set 
of equations (4). 
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In matrix form it is possible to write 
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Future output prediction of the system y(t+i) is possible to 
calculate by multiplying the equation (5) by the inverse 
matrix A -1, equation (6). 
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Last two terms describes only the system history, therefore 
it is possible to put them together to the matrix F and the 
vector of historical output and inputs  Tuyh  . Thus, the 
equation of prediction is possible to write in the form of 
equation (7). 

hFG.uy .       (7) 

The aim of GPC is to calculate the vector of manipulated 
variable by minimizing of the cost function (8). 
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where e is vector of control errors (length N), u is vector of 
manipulated variables (length N) and λ is weighting 
coefficient. 

The cost function can be modified using output prediction 
(9) and set point vector w. 

.uuF.hG.uwF.hG.uw T.)()(  TJ  (9) 

We can calculate the vector of manipulated variable u 
analytically using the square norm. Then we get equation 
(10). 

F.h).(w.G.I).G(Gu T1T  λ  (10) 

We usually need only one actual value of the manipulated 
variable (the first element of the vector) therefore the final 
form of the control law is equation (11). 
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where K is the first row of matrix  (GT.G+λ.I) -1.GT 

 

GPC theory is formulated for the group of linear systems 
control but in the case of nonlinear systems it is not 
possible to use it because the linear model is not able to 
describe the nonlinear process well. Nonlinear system 
control needs nonlinear model or linearized model (this 
case). 

In the case of piecewise linearized GPC we can do the 
linearization of the model and formulate it in the form of 
(3). Matrices G and F are possible to calculate from this 
form in defined number of linearization points, equation 
(7). Thus, the controller will switch between pre-calculated 
setting during control experiment (according to reactor 
temperature). Moreover, it is possible to interpolate 
between two adjoining settings. Nonlinear behavior of the 
system is substituted by piecewise linearized model. 
Complex description of this approach is in (Mareš et 
all.,2010b). 

 The control experiment was realized too. Results are 
shown in figure 4, where the description of charts is the 
same as in previous example.    
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Fig. 4.Linearized GPC  

 
5. NEURAL NETWORK PREDICTIVE  CONTROL 

 
Another approach to predictive control is described in this 
section. Predictive controller here uses a neural network 
(NN) model of nonlinear plant to predict future plant 
performance. The controller then calculates the control 
input that will optimize plant performance over a specified 
future time horizon. 

The first stage of NN predictive control is to design a 
neural network which represents the dynamics of the plant. 
The prediction error between the plant output and NN 
output is used as the neural network training signal (see 
figure 5). 
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Fig. 5. – NN model identification 

This neural network can be trained offline in batch mode, 
using data collected from some experiments with the plant. 
Any backpropagation algorithm can be used for network 
training. Process of neural network model design is 
discussed in detail in (Taufer et all., 2008). 

In this control technique, neural network predicts the plant 
response over a specified time horizon. The predictions are 
used by some search technique to determine the control 
signal that minimizes the following performance criterion 
over the specified horizon N 

uuee ... T
N

T
NJ   (12) 

where eN and u are the same vector as in (8). 

The figure 6 illustrates the NN model predictive control 
process. The controller consists of the neural network plant 
model and the optimization block. The optimization block 
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determines the values of u’(k) that minimize the criterion J, 
and the optimal u’(k) is input to the plant. 

It is obvious, that key part of block diagram below is 
optimization block or used search technique, more 
precisely. Mostly, optimal u’(k) is not found every sample 
time, because only fixed number of iterations is performed 
per one sample time. 

Whole control technique is included in Neural Network 
Toolbox of Matlab. 
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Fig. 6. NN predictive control  

Control experiment with NN predictive controller was 
performed (Prediction horizon N = 20, λ = 0.1, golden 
section search routine). Neural network model was trained 
offline with Levenberg-Marquardt training algorithm and 
its topology is illustrated in figure 7. Control performance 
can be found in figure 8. 
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Fig. 7. NN model  

 

 
Fig. 8. NN predictive control performance  

 
 
 

6.   CONCLUSIONS 
 

Paper deals with different techniques of real system 
(reactor furnace) control. As the introduction there is a 
brief description of the plant, which behavior is nonlinear 
because of the range of the reactor temperature. 

The first part describes the simplest way – PID controller, 
where gain and time constants were set according to T. 
method. The method gives the PID control response very 
slow but robustness. Therefore, nonlinear systems are 
possible to be controlled quite satisfactorily. 

Then, the second part describes the predictive control 
design which uses firstly linearized mathematical model 
and secondly neural network model. 

As conclusion, it is possible to say, that all three 
approaches gives satisfactory results and are able to control 
nonlinear system properly.  
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