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Abstract: Mathematical technicalities, involved in the modern theory of non-linear
control systems, many times prevent a wider use of the impressive theoretical results
in practice. Attempts to overlap this gap between theory and practice are usually more
than welcome and form the main scope of our interest in this work. An important
control problem given by the disturbance decoupling is studied for a real laboratory
model of coupled tanks. Since the theoretical solution to the disturbance decoupling
problem does not satisfy practical control requirements it is modified accordingly.
Experiments on the real plant are included as well and show that the disturbances
practically do not affect the system output.

Keywords: nonlinear discrete-time systems, applications, algebraic methods,
disturbance decoupling, coupled tanks

1. INTRODUCTION

The modern theory of nonlinear control systems
all, continuous-time, discrete-time and time-delay,
owes a large part of its succes to the systematic
use of differential algebraic methods. Since early
80’s of the last century this has been forming
the scope of interest of many authors in a num-
ber of works, see for instance Fliess (1985 1992);
Conte et al. (1993); Aranda-Bricaire et al. (1995
1996); Kotta et al. (2001); Xia et al. (2002); Conte
et al. (2007) and references therein. Nowadays,
such methods offer solutions to a wide range of
nonlinear control problems including feedback lin-
earization, model matching, disturbance decou-
pling, realization problem, non-interacting con-
trol, observer design and many others.
However, a price one has to pay for such impres-
sive and elegant solutions is given by a necessity
to involve many mathematical technicalities. Ob-
viously, this prevents a wider use of the theoretical
results in practice, making the big gap between

control theory and control practice even bigger in
this case. It is generally known that in practice
the way of dealing with nonlinear control systems
is many times based just on the linearization in a
fixed operating point and then methods of linear
control systems are applied. Therefore, attempts
to overlap the gap are usually more than welcome
and form the main scope of our interest in this
work. In particular, an important control prob-
lem given by the disturbance decoupling, which
is quite frequent control problem in practice, is
studied. We begin with the theoretical solutions
of Conte et al. (2007) and apply them to the
laboratory model of coupled tanks, which is a
demonstrative and well know system having con-
tact points to many real control processes, for
instance from chemical engineering. It is shown
that the theoretical solutions cannot be directly
applied and additional problems, related for in-
stance to the difference between model and real
system, have to be considered as well. Similar so-
lution as discussed in this paper has recently been
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given in Žilka and Halás (2010) for continuous-
time case, while here the discrete-time counter
part is treated. Certain contact points exist also
to the non-interacting problem studied in Halás
and Žilka (2011). Finally, for additional existing
results of the disturbance decoupling problem for
nonlinear discrete-time systems the reader is re-
ferred for instance to Kotta (1995) where a simple
inversion-based solution is given and to Grizzle
(1985) where a more advanced differential geomet-
ric solution can be found.

2. DISTURBANCE DECOUPLING

We begin with an introduction to the disturbance
decoupling problem of nonlinear control systems
as discussed in Conte et al. (2007) to which the
reader is referred for additional details and refer-
ences. The ideas can easily be carried over to the
discrete-time systems.
For the sake of simplicity we introduce the follow-
ing notation. For any variable ξ(t) we write only
ξ and for its time shifts ξ(t + T ), ξ(t + 2T ) we
write ξ+, ξ++ respectively, or, in general, ξ[k] for
ξ(t+ kT ), where T is a sampling period.
Using the above introduced notation the systems
considered in this paper are objects of the form

x+ = f(x, u)

y = g(x) (1)

where x ∈ Rn, u, y ∈ R and entries of f and
g are meromorphic functions from the difference
field denoted by K. For more details see Aranda-
Bricaire et al. (1996); Kotta et al. (2001); Halás
et al. (2009).

In the disturbance decoupling our task is to de-
sign, if possible, a control law such that the dis-
turbances do not affect the system output. Tech-
nically speaking, the solution consists of finding
a feedback under which a subspace of the state
space, affected by disturbances, becomes unob-
servable in the compensated system. This situa-
tion can be explained by the following introduc-
tory system

x+1 = x2u

x+2 =w

y = x1

where w is the disturbance.
As can be seen, through x2 the disturbance w
affects the system output

y++ = u+w

However, the state feedback u = v/x2, with v
being an input to the compensated system, makes

x2 unobservable in the compensated system and
thus decouples the disturbance w from the system
output

y+ = v

The general solution follows the same idea. That
is, if possible, make unobservable the subspace of
the state space affected by the disturbance.

Problem statement. Consider the SISO system

x+ = f(x, u) + p(x)w

y = g(x)

where the state x ∈ Rn, the disturbance w ∈ Rq

and the entries of f , g and p are elements of the
difference field of meromorphic functions K. Find,
if possible, a static state feedback

u = α(x, v)

such that

dy[i] ∈ spanK{dx, dv, . . . , dv[i]}
for any i ∈ N.

Theorem 1. Let X = spanK{dx} and Y =
spanK{dy[i]; i ≥ 0}. The disturbance decoupling
problem is solvable if and only if p(x) ⊥ X ∩ Y.

PROOF. The proof follows the same line as in
Conte et al. (2007), however, carried over to the
discrete-time case.

3. COUPLED TANKS

Coupled tanks are well-known and illustrative sys-
tem having contact points to many real control
processes. For that reason practically each labo-
ratory which activities are related to the system
and control theory possesses such a plant. In this
section, the mathematical model of the laboratory
plant is built up, from its identification to the
nonlinear discrete-time state-space model. Then,
the disturbance decoupling is applied.

3.1 System identification

We restrict our attention to a standard coupled
two-tank system, however, with all three valves
active. The structure of such a system is depicted
in Fig. 1. Our aim is to control the level in the
first tank which is, however, coupled with the
second tank by a valve with the flow coefficient
c12. Each of the tanks is equipped by a valve itself,
having the flow coefficients c1 and c2 respectively.
However, the valve c2 is considered here as the
disturbance w. Thus, we deal here with a SISO
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Fig. 1. Coupled tanks

system which can be modelled by the following
state-space equations

ẋ1 =
1

A
u− c12 sign(x1 − x2)

√
|x1 − x2| − c1

√
x1

ẋ2 = c12 sign(x1 − x2)
√
|x1 − x2| − wc2

√
x2

y = x1 (2)

where x1 and x2 are levels in tank 1 and tank 2
respectively and A is a cross-section of the tanks,
see Fig. 1. Note that both tank 1 and tank 2 have
the identical cross-sections here. The disturbance
w ∈ {0, 1}, depending on whether the valve c2 is
switched off or on respectively. In this case the
level of a liquid in tank 2 might be greater than
in tank 1. For that reason a more general model
(2) has to be used.

To identify the system we have to find, besides the
cross-sections A, the values of flow coefficients c1,
c2 and c12. The usual methods to treat the identi-
fication are based on applying a couple of certain
experiments and measurements. Then the coeffi-
cients are computed by using either the steady-
states of the system or the system linearization
in a fixed operating point. However, both of them
are rather slow. In addition, it is, usually, recom-
mended to find a set of values in different steady
states or operating points respectively and take
their average finally. For that reason we, in what
follows, suggest a different approach to the system
identification which is based on finding a solution
to the reduced nonlinear differential equations of
the system (2). As a result we will be able to
compute all the coefficients only by measuring the
time of the respective experiments.

To identify the flow coefficient c1 suppose that all
valves are closed and the pump is inactive. Let
x10 6= 0 be a level of a liquid in tank 1. The
experiment consists of opening the valve c1 only
and measuring the time τ that it takes to empty
the tank from an initial value x10 to a final value
x11. Obviously, this situation can be modelled by
the reduced nonlinear differential equation

ẋ1 = −c1
√
x1

Even though the equation is nonlinear the solution
can easily be found as follows

dx1
dt

=−c1
√
x1

x11∫

x10

1√
x1

dx1 =−
τ∫

0

c1dt

[
2
√
x1

]x11

x10

=
[
− c1t

]τ
0

2(
√
x11 −

√
x10) =−c1τ

Finally

c1 =
2(
√
x10 −

√
x11)

τ
If the final value x11 is chosen to be 0, which
is usually the most reasonable choice, then the
formula reduces to

c1 =
2
√
x10
τ

(3)

where τ is the time it takes to empty tank 1
completely from the initial value x10.
Clearly, the analogous experiment can be repeated
for the second tank giving us the formula

c2 =
2
√
x20
τ

(4)

where this time τ is the time it takes to empty
tank 2 completely from its initial value x20.
To identify the flow coefficient c12 a more ad-
vanced experiment is needed. Suppose that all
valves are closed and both pumps inactive. Let
x10 6= 0 be a level of a liquid in tank 1 and
x20 < x10 be a level of a liquid in tank 2. This time
the experiment consists of opening the valve c12
only and measuring the time τ it takes the level
in tank 1 decrease from the initial value x10 to the
final value x11. Such a situation can be modelled
by the following nonlinear differential equations

ẋ1 =−c12
√
x1 − x2

ẋ2 = c12
√
x1 − x2

However, one can use either of them to find the
solution. For instance the first equation yields

dx1
dt

=−c12
√
x1 − x2

1√
x1 − x2

dx1 =−c12dt

Note that the situation during the experiment
implies that x10 − x1 = x2 − x20 and thus
substituting x2 = x10 + x20 − x1 gives us

x11∫

x10

1√
2x1 − x10 − x20

dx1 =−
τ∫

0

c12dt

[√
2x1 − x10 − x20

]x11

x10

=
[
− c12t

]τ
0
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√
2x11 − x10 − x20 −

√
x10 − x20 =−c12τ

Finally

c12 =

√
x10 − x20 −

√
2x11 − x10 − x20
τ

Here, if the initial value x20 is chosen to be 0 and
the final value x11 is chosen to be x10/2, that is the
levels in both tanks finally equal each other (note
that the tanks have the identical cross-sections)
the formula reduces to

c12 =

√
x10
τ

(5)

where τ is the time it takes the levels in both tanks
equal each other.

Using the above formulas (3), (4) and (5) the flow
coefficients c1, c2 and c12 of the laboratory plant
were identified as 1.17 ·10−2, 1.17 ·10−2 and 2.65 ·
10−2 respectively. Finally, the cross sections of
both tanks are approximately A = 10.18 ·10−4m2.

3.2 Discrete-time state-space representation

To find a discrete-time state-space representation
of the system (2) one needs to find a solution
to the set of nonlinear differential equations and
sample it by the sampling period T . Since the
system equations (2) involve nonlinear functions
we are, in general, not able to find any. In such a
case one usually has to rely on approximations
only. One of the possibilities is to employ the
Taylor series expansion.
Assume that

ẋ(t) = f(x(t), u(t))

where f is analytic. Then one can write

x(t+T ) = x(t)+ ẋ(t)T +
ẍ(t)

2!
T 2 +

x(3)(t)

3!
T 3 + · · ·

However, it is usually sufficient to consider only
the first two terms of the Taylor series expansion
to approximate the system behaviour in which
case one gets the well-known Euler approximation

ẋ(t) ≈ x(t+ T )− x(t)

T

Using such an approximation one can find the
discrete-time state-space model from (2) as

x+1 = x1 +
T

A
u− c12T sign(x1 − x2)

√
|x1 − x2|

−c1T
√
x1

x+2 = x2 + c12T sign(x1 − x2)
√
|x1 − x2|

−wc2T
√
x2

y = x1 (6)

3.3 Disturbance decoupling problem

The standard theoretical solution to the distur-
bance decoupling problem, as outlined in Sec-
tion 2, does not meet basic practical control re-
quirements, as shown in what follows, and thus it
is necessary to modify it accordingly.
To proceed with the disturbance decoupling we
compute

y+ = x1 +
T

A
u− c12T sign(x1 − x2)

√
|x1 − x2|

−c1T
√
x1

Since y+ directly depends on the input u, that is
the relative degree of the system is 1, and it is not
affected by the disturbance w, it can be decoupled.
Note that in according to Theorem 1 we have X ∩
Y = spanK{dx1} and thus p(x) = (0,−c2

√
x2)T

is orthogonal to X ∩ Y.
By solving for u the equation

y+ = v

one gets

u=
A

T
v − A

T
x1 + c12A sign(x1 − x2)

√
|x1 − x2|

+c1A
√
x1 (7)

where v represents input to the compensated
system which is reduced to the first order linear
system y+ = v with the transfer function

F (z) =
1

z
(8)

However, from a practical point of view the com-
pensated system cannot respond in one sam-
pling period T , like its transfer function (8) says,
at least for lower sampling periods T , for we
have a controller output constraint u ∈ 〈0, qmax〉
where qmax is upper limit of the pump capac-
ity. On the other side for higher sampling pe-
riods T the discrete-time approximation (6) of
the continuous-time system (2) might no longer
be sufficient. In addition, there obviously exist
additional differences between the real plant and
its continuous-time model (2) that have not been
considered. For that reason, the real compensated
system will possess oscillations even for not that
high sampling periods T when the discrete-time
approximation (6) is still accurate. Last but not
least, the feedback (7) is not a controller at all.
Obviously, it is only a static state feedback achiev-
ing the disturbance decoupling, however, with no
intention to track the reference signal or to elimi-
nate unmodelled disturbances. For all the aspects
listed above, such a solution is practically not
applicable and needs to be modified accordingly.

There exist several possibilities how to overcome
the problems. One of them, discussed in Žilka and
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Halás (2010) for continuous-time case, suggests to
modify the feedback (7) such that the whole sec-
ond tank, together with the disturbance, becomes
unobservable. Then, one only has to design a con-
troller for a one-tank system which is, obviously,
a trivial task and plenty of solutions have been
given. This seems to be a reasonable choice also
in the discrete-time case. The feedback (7) can
easily be modified to the form

u = v + c12A sign(x1 − x2)
√
|x1 − x2| (9)

under which the compensated system takes now
the form of one-tank system with the discrete-time
state-space model

x+1 = x1 +
T

A
v − c1T

√
x1

y = x1 (10)

Then the controller can easily be designed by the
system linearization in a fixed operating point
(x10, v0, y0) which reads

∆x+1 = ∆x1 +
T

A
∆v − c1T

2
√
x10

∆x1

∆y = ∆x1

where ∆x1 = x1−x10, ∆v = v−v0 and ∆y = y−
y0. It has the transfer function

F (z) =
K

z −D
where K = T/A and D = 1− c1T

2
√
x10

.

If one wants the transfer function of the compen-
sated system

G(z) =
R(z)F (z)

1 +R(z)F (z)

to take the form of a first order linear system with
the time constant T1, then the solution is given
by a linear discrete-time PI controller with the
transfer function

R(z) =
(1− λ)(z −D)

K(z − 1)
=

1− λ
K

(
1 +

1−D
z − 1

)

where λ = e−T/T1 .

Remark 2. Note that more advanced solution,
dealing also with the system linearization, the
controller output constraint and two different dis-
turbances to decouple, has been suggested in Žilka
et al. (2009).

The closed loop structure is depicted in Fig. 2.
The responses of the real laboratory plant are
shown in Fig. 3 where one can observe the differ-
ences between the linear PI-controller with and
without the disturbance decoupling (9). In the
latter the disturbances practically do not affect

Fig. 2. Closed loop

Fig. 3. Closed loop responses: PI-controller with
(solid, green line) and without (dashed, blue
line) the disturbance decoupling.

the system output. However, since we have the
constrained controller output and since only a
standard PI-controller has been used to control
the system both solutions admit an overshoot. A
non-overshooting solution has been suggested in
Žilka and Halás (2010).
The parameters were chosen as follows: T = 0.25s,
T1 = 5s and x10 = 0.2m.

Our final note is related to the slight modification
of the disturbance decoupling (9) which is appro-
priate from a practical point of view and has been
implemented in our solution. When the valve c2
is closed the equations (2) imply that in a steady
state one, theoretically, has x1 = x2. However, in
practice, there are differences between x1 and x2
caused at least by sensors calibration and noise.
Therefore the term sign(x1 − x2) in (9) oscillates
between 1 and −1 and thus produces small oscilla-
tions of the controller output especially in steady
states, which is, of course, inconvenient. The prob-
lem can and has been overcome easily by adding a
deadzone to the disturbance decoupling making it
inactive whenever the difference between x1 and
x2 is less than 2 · 10−3m.
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4. CONCLUSIONS

In this work, an attempt to overlap the gap
between control theory and control practice was
studied. An important practical control problem
given by the disturbance decoupling problem were
applied on coupled tanks. It was shown that
the initial theoretical solution to the disturbance
decoupling problem does not satisfy the basic
control requirements. For that reason, the solution
was modified accordingly. This resulted in the PI-
controller with the disturbance decoupling. As a
result the disturbances practically did not affect
the system output of the real laboratory plant.
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V. Žilka and M. Halás. Disturbance decoupling of
coupled tanks: from theory to practice. In IFAC
Symposium on System, Structure and Control,
Ancona, Italy, 2010.
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