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PI/PID Controller Design for FOPDT Plants Based on the Modulus Optimum 
Criterion 

 
J. Cvejn* 

 

* University of Pardubice, Faculty of Electrical Engineering and Informatics, 
Studentská 95, 532 10 Pardubice, Czech Republic (e-mail: jan.cvejn@upce.cz)  

Abstract: We present the PI/PID controller settings for the first order systems with dead time, based on the modulus 
optimum criterion. The settings provide fast closed-loop response to changes of the reference input. Unlike most other 
tuning methods, the parameters are obtained without approximation of the delay term, so they remain valid for long 
dead time. Besides the performance indices, quality of the settings is also evaluated by the stability margin. Although 
optimal values of the parameters are valid for the reference tracking problem, a compensation of the disturbance lag 
that preserves the stability margin is proposed for the disturbance rejection problem. 

 

1. INTRODUCTION 

Many industrial processes are modelled by the stable first-
order plus dead time (FOPDT) transfer function: 

 ( )
1

sKS s e
Ts

τ−=
+

 (1) 

where K is the system gain, 0T >  is the time constant and τ  
is the dead time parameter. The model (1) allows simple 
experimental identification from the step response, which can 
be in most cases easily measured. Simple methods based on 
coincidence in one or more points and more complex 
methods suitable for noisy data are described in (Åström and 
Hägglund 1995) and (Kiong et al. 1999).  

For tuning PID controllers based on the model (1) many 
approaches exist, see e.g. (Åström and Hägglund 1995) for 
description of the most important methods. A comprehensive 
survey of known formulas is available in (O´Dwyer 2003). 
Early methods were derived from empirical requirements on 
the step response, such as one-quarter decay ratio (Cohen and 
Coon 1953), (Ziegler and Nichols 1942), step-response 
overshoot (Chien at al. 1952) or from integral criterions in 
time domain with approximation of the dead-time dynamics 
(Lopez et al. 1967), (Wang et al. 1995). These methods, 
however, usually work well only for a rather limited range of 
the ratio /Tτ .  

Among methods for the model of type (1) without 
approximation of the delay term the design with given gain 
and phase margins (Ho et al. 1995) and LQR design (Kiong 
et al. 1999) should be mentioned. Alternative ways for 
systems with long time delay include internal model control 
(Rivera et al. 1986), Smith predictor and λ -tuning (Åström 
and Hägglund 1995). These approaches, however, require 
implementation of delay in the control system.  

The method for setting up PI controller parameters based on 
cancellation of the factor ( 1)Ts +  was proposed in (Haalman 
1965). In this method the dead-time dynamics is manipulated 

without approximation. Good reference tracking performance 
is achieved, but on the other hand, poor results may be 
observed for rejection of load disturbances (Åström and 
Hägglund 1995). In a similar way it is possible to compensate 
dynamics of the second order plus dead time system by a PID 
controller. 

In this paper we utilize Haalman’s idea of pole compensation 
for designing optimal PI and PID controller parameters for 
the model (1). The pole compensation fixes the value of one 
parameter of the controller. We adjust the remaining 
controller parameters to meet analytic design criteria. We 
show that in this case especially the modulus optimum 
criterion leads to a simple choice of the parameters and to a 
control loop with very good practical properties. In this case, 
derivative term of the controller increases both the 
performance and the stability margin. The results presented 
here appeared in full context in the journal paper (Cvejn 
2009), where also the settings based on the minimum ISE 
criterion were analyzed.  

The modulus optimum criterion introduced in (Oldenbourg 
and Sartorius 1956) requires that the amplitude of the closed-
loop frequency response is close to one for low frequencies. 
If the closed-loop frequency response is decreasing, this 
condition is analogous to the requirement that the frequencies 
in the reference input are passed in the broadest possible 
range. Such a behaviour is desirable for the reference 
tracking cases, because then the closed-loop system is able to 
respond quickly to changes of the reference input.  

Let us write the closed-loop frequency response in the form  

 ( ) 1( )
1 ( ) 1 1/ ( )

L iT
L i L i

ωω
ω ω

= =
+ +

 (2) 

where ( )L s  is the open-loop transfer function in Laplace 
transform. If ( )L s  contains a pole in the origin, which is 
necessary to achieve asymptotically zero regulation error, for 
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0ω →  holds ( )L iω → ∞  and thus 2

0
lim ( ) 1T
ω

ω
→

= . 

Therefore, it is possible to write 2( )T ω  as  

 2( ) 1 ( )T Hω ω= +  (3) 

where ( )H Cω ∞∈ . Maximal flatness of the closed-loop 
frequency-response modulus is then equivalent to the 
requirement that   

 ( )0 ( ) maxn H ω →  (4)   

where ( )0 ( )n H ω  denotes the index of the first nonzero 
coefficient in the Taylor expansion of ( )H ω .  

Besides performance objectives, the design has to respect 
stability requirements. As the stability margin we consider 
the distance of the open-loop Nyquist plot from the critical 
point [ ]-1, 0 , i.e. the value  

 
( )

{ }
0,

inf 1 ( )L i
ω

γ ω
∈ ∞

= + ,  [ ]0, 1γ ∈ . (5) 

The reciprocal value of γ  is known as the sensitivity 
function. In general case it is recommended that the 
sensitivity is in the range from 1.3 to 2 (Åström and 
Hägglund 1995).  

2. THE CONTROLLER DESIGN 

 
 
 
 
 

 

Fig. 1. Control scheme for reference tracking 

At first, consider the PI controller case. Consider the 
reference tracking control problem in Fig. 1. If we 
compensate the factor ( 1)Ts +  by the PI controller  

 1( ) 1C
I

R s K
T s

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (6) 

where    

 C
TK

K
κ

τ
= ,  IT T=  (7) 

the open-loop transfer function is  

 ( ) sL s e
s

τκ
τ

−=  (8) 

where κ  is a tuning parameter. The corresponding frequency 
response can be written as  

 ( / 2) sin cos( ) i iL e e i
i

ξ ξ πκ κ ξ ξξ κ
ξ ξ ξ ξ

− − + ⎛ ⎞
= = = − +⎜ ⎟

⎝ ⎠
 (9) 

where ξ τω=  is normalized frequency.  

The corresponding Nyquist plot is dependent only on a single 
parameter κ , which can be adjusted so that sufficient 
stability margin is guaranteed and performance objectives are 
fulfilled.  

In the case of serial PID controller we can put analogously  

 
( )

( )

1( ) 1 1

11 1

C D
I

D

R s K T s
T s

T T s
K Ts

κ
τ

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (10) 

and we easily obtain the corresponding open-loop transfer 
function  

 1( ) sDT
L s e

s
τκ

τ τ
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (11) 

and the frequency response in the form   

 1( ) iL i e ξξ κ δ
ξ

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (12) 

where ξ τω=  is normalized frequency and /DTδ τ= .  

 
Proposition 1. The modulus-optimum settings for the PID 
controller (10) are: 

 * 1/ 3δ =  and * 3 / 4κ = . (13) 
and for the PI controller (6): 

  * 1/ 2κ = . (14) 
Proof: The closed-loop frequency response (2) square 
modulus is   

 
( )

2

2

1 1( )
1 1 ( )1 1 2Re

T
QL

L

ξ
ξ

= =
++ +

. (15) 

It can be easily verified (Cvejn 2009) that if  

 11 ( )
1 ( )

H
Q

ξ
ξ

+ =
+

 (16) 

where ( )Q Cξ ∞∈ , it holds  

 ( ) ( )0 0( ) ( )n H n Qξ ξ= . (17) 

Since  

 2 2 2
2

1( )L ξ κ δ
ξ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (18) 

it is  

 ( ) ( ) ( )0 0 0( ) 1 2Re ( ) 2 ( ) 1n Q n L n Gξ ξ ξ= + + = +  (19) 

where 

 ( )( ) 1 2 Re ( )G Lξ ξ ξ= + . (20) 

1

sKe
Ts

τ−

+
 ( )R s  +

-

w  ye  
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To achieve maximal ( )0 ( )n Q ξ  and thus maximal ( )0 ( )n H ξ  
we require that the derivatives of ( )G ξ  are zero for 0ξ →  
up to maximal order. After substitution, it is easily found that  

 

( )

( )

( )

0

3

30

5

50

lim 1 2 1

lim 2 1 3

lim 2 5 1

dG
d
d G
d
d G
d

ξ

ξ

ξ

κ δ
ξ

κ δ
ξ

κ δ
ξ

→

→

→

= + −

= −

= −

 (21) 

 and   
( )

( )0
lim 0, 0, 2,4,...

k

k

d G k
dξ ξ→

= =   (22) 

Putting (21) equal to zero yields * 1/ 3δ =  and * 3 / 4κ = . For 
PI controller, where 0δ = , it follows that the optimal setting 
is * 1/ 2κ = .     
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Fig. 2. Open-loop Nyquist plots of proposed settings (solid 
line – PID controller, dashed line – PI controller) 
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Fig. 3. Step responses (solid line – PID controller, dashed 
line – PI controller)   

Figures 2 and 3 show the Nyquist plots and corresponding 
step responses for the proposed settings (the ideal open-loop 
transfer function (11) with 1sτ = is considered). Obtained 
settings obviously have very good quality for most practical 

purposes – the time response is fast and nearly not 
oscillating. The overshoot is of about 6 % in the case of PID 
controller. Figure 4 shows the corresponding dependence of 

( )T ξ  on ξ .  
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Fig. 4. Dependence ( )Tζ ξ→  (solid line – PID controller, 
dashed line – PI controller)  

The resulting parameters of PI, serial PID and the parallel 
PID controller  

 1( ) 1C D
I

R s K T s
T s

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (23) 

are summarized in Tab. 1. 

 

Controller CK  IT  DT  

PI  
1
2

T
Kτ

 T  - 

PID 
(serial) 

3
4

T
Kτ

 T  
1
3

τ  

PID 
(parallel) 

1 31
4

T
K τ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 
3

T τ
+  

3 /T
τ
τ+

 

 Tab. 1. PI/PID controller settings for reference tracking  

For the ultimate normalized frequency, where 
arg ( )cL ξ π= − , we easily obtain the equation  

 1arctgc
c

ξ π
δξ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (24) 

which can be solved iteratively. Denote ψ  the angle between 
negative real axis and the Nyquist plot of ( )L ξ  at the 
ultimate frequency cξ ξ= . Geometrical shape of the curve 
(Fig. 2) enables to construct a lower bound of the stability 
margin γ  using the angle ψ :   

 11 sinγ γ ψ
α

⎛ ⎞≥ = −⎜ ⎟
⎝ ⎠

 (25) 

[ ]t s  

ξ

( )T ξ  

Im  

Re
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where α  is the amplitude margin. 0.54γ ≈  was obtained for 
PID controller and 0.57γ =  for PI controller.  

3. THE DISTURBANCE REJECTION PROBLEM 

In most practical cases the reference input is held constant, 
but the system is excited by external disturbances. We 
consider that the disturbance influences output through the 
FOPDT transfer function (see Fig. 5). 

 
 
 
 
 
 
 
 
 

Fig. 5. Control scheme for disturbance rejection 

It is well known that good tracking performance does not 
imply efficient disturbance rejection (Åström and Hägglund 
1995). The closed-loop transfer function between d and y is  

 1( )
1 1 ( )

d s

d
d

eS s
T s L s

τ−

=
+ +

 (26) 

and thus the factor ( )1/ 1dT s +  will be present in the response 
regardless of the controller settings, unless it is compensated 
by a closed-loop zero.  

Since the rise time in the optimal configuration including 
dead time is not shorter than about 2τ  in all the 
configurations, if 2dT τ≤ , total dynamics is not affected 
much adversely by the term ( )1/ 1dT s +  in the input. On the 

other hand, if 2dT τ , the factor ( )1/ 1dT s +  can slow down 
the response significantly.  

The term on the right in (26) corresponds to the transfer 
function of the regulation error at the reference tracking 
problem and thus the optimal disturbance rejection problem 
is analogous to the problem of optimal tracking reference 
signal with L-transform  

 1( )
1

d s

d

eW s
T s s

τ−

=
+

. (27)  

Therefore, one way how to achieve good performance is to 
sufficiently decrease dT , while keeping the other parts of the 
closed-loop transfer function unchanged. If d is not 
measured, both these objectives probably cannot be fulfilled. 
Below a compensation that reduces dT  to dT ′  and 
simultaneously approximately preserves the stability margin 
is proposed. It is possible to assume that in this case the 
performance will not be much degraded.  

If we choose the controller in the form  

 
1

( ) ( )
1

d d
d

d d

T T s
R s R s

T T s
′ +

=
′ +

 (28)   

where ( )R s  is the controller tuned for the reference tracking 
and d dT T′ < , the closed-loop transfer function is 

 

1( )
11 1 ( )
1

1 .
11 ( )
1

d

d

s

d
d dd

d d

s
d

d dd d

d d

eS s
T T sT s L s
T T s

T e
T T sT T s L s
T T s

τ

τ

−

−

= =′ ++ +
′ +

′
= ′ +′ + +

′ +

 (29) 

However, such a reduction of dT  at the same time decreases 
the stability margin. Denote ( )dL ξ  the open-loop frequency 
response if the controller (28) is used. If we assume that 

( )/ 1dTτ ξ′  and d dT T ′≥ , holds  

 
/ 1 1( ) ( ) 1 ( )
/ 1

d d
d

d d d

T iT
L L i L

T iT r
ξ τ

ξ ξ ξ
ξ τ ξ
′ ⎛ ⎞+

= ≈ −⎜ ⎟′ + ⎝ ⎠
 (30) 

where  

 
1

1 1 1
d

d d

r
T Tτ

−
⎛ ⎞

= −⎜ ⎟′⎝ ⎠
. (32) 

We determine the parameter dr  from the condition  

 d h
γ γ

γ
−

=  (33) 

where γ , dγ  are the lower estimates of the stability margin 
given by formula (25) for the original controller and the 
modified controller (28), respectively, and h is a sufficiently 
small chosen constant.  Equation (33) is solved iteratively, 
see (Cvejn 2009) for complete explanation. dT ′  is then 
obtained from 

 
1

1 1
d

d d

T
r Tτ

−
⎛ ⎞

′ = +⎜ ⎟
⎝ ⎠

.  (34) 

The value h  should be chosen so that the stability margin be 
approximately preserved, but since small h  leads to large 

dT ′ , a  compromise has to be looked for. A good choice 
seems to lie in the range [ ]0.05, 0.08h ∈ . The results 
corresponding to 1/16h =  are 5.92dr =  for PI controller and  

3.91dr =  for PID controller. Note that for / 0dT τ →  we 
obtain ( ) ( )dR s R s→  and the controller is the same as for the 
reference tracking problem.   

Figure 6 shows the open-loop Nyquist plots after the 
compensation for PID controller, for dT → ∞ , 5dT τ= , 

dT τ=  and 0dT =  (i.e. without compensation).  

1

sKe
Ts

τ−

+
 ( )R s+w  ye  

d  
1

d s

d

e
T s

τ−

+

+
+
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A disadvantage of the proposed compensation is that 
additional term ( 1) /( 1)d dT s T s′ + +  is needed. However, if 

dT T=  (this is also the case when the disturbance influences 
the system input), the factor ( )1/ 1Ts +  of the system need 
not be directly compensated. Instead, the PID controller takes 
the form  

 

( )

( )

1 1( ) 1 1
1

11 1

d
d D

d

D

d

T sT TR s T s
T Ts K Ts

T T s
K T s

κ
τ

κ
τ

′ + ⎛ ⎞= + + =⎜ ⎟′ + ⎝ ⎠

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟′⎝ ⎠

 (35) 

which is similar to (10). Note that the integral term of the 
controller, which is needed to achieve zero regulation error, 
here plays the additional role of compensating the 
disturbance lag.  

The corresponding settings of PI and PID controllers for 
input disturbance rejection, 1/16h = , are summarized in 
Tab. 2.  

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

I

 
Fig. 6. Open-loop Nyquist plots after compensation, PID 
controller for dT → ∞  (solid line), 5dT τ=  (dashed), dT τ=  
(dash-dotted) and 0dT =  (dotted) 

 

Ctrl. CK  IT  DT  

PI  
1
2

T
Kτ

 
11 1

5.9 Tτ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠

 - 

PID 
serial 

3
4

T
Kτ

 
11 1

3.9 Tτ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠

 1
3

τ  

PID 
parallel 

1 1 3.26
4

T
K τ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

11 1 1
3.9 3T

τ
τ

−
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 

13.26 1
Tτ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠
 

Tab. 2. PI/PID controller settings for input disturbance 
rejection  

4. EXPERIMENTAL COMPARISONS 

At first, we consider the reference tracking problem, where 
the reference signal is not known in advance. Although many 
of PID tuning formulas for the model (1) are available, most 
of them are applicable only for a limited range of the ratio 

/Tθ τ= . Usually, it is required that 0.1θ ≥  and 1θ ≤  or 
2θ ≤ . The minimum ISE, IAE and ITAE tuning rules in 

(Wang et al. 1995), where the recommended range of θ  is 
[ ]0.05, 6θ ∈ , are among the exceptions. Note that the 

modulus-optimum (MO) settings we propose admit any 
positive value of θ . 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

 
Fig. 7. 1( )F s reference tracking, step response. Settings: MO-
PID (solid line), MO-PI (dash-dotted), Chien (dashed), Wang 
(dotted)   
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0

0.5

1

1.5

 
Fig. 8. 2 ( )F s reference tracking, step response. Settings: MO-
PID (solid line), MO-PI (dash-dotted), Chien (dashed), Wang 
(dotted)   

Figures 7 and 8 show the reference signal step responses for 
the plants   

 0.3
1

1( )
1

sF s e
s

−=
+

,   5
2

1( )
1

sF s e
s

−=
+

 (36) 

and parallel (ideal) PID controller tuned by using Wang IAE 
formulas (Wang et al. 1995), well known formulas by Chien 
et al. (Chien et al. 1952) for 20% step-response overshoot and 

[ ]t s  

[ ]t s  

Im  

Re
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MO settings of PI and PID controller. Chien settings for large 
θ  result in too slow response, which could be expected, since 
recommended range of θ  is ( )0.11, 1θ ∈ . We also tested 
well known Ziegler-Nichols formula (Ziegler and Nichols 
1942), which for 1( )F s  give a rather oscillating response with 
about 75% overshoot and for 2 ( )F s  slow and overdamped 
response.  

For the disturbance rejection problem we consider that the 
disturbance influences the system input, i.e. dT T= . Figures 
9 an 10 show the load disturbance step responses for the 
plants 1( )F s  and 2 ( )F s  and parallel PID controller tuned 
according to the minimum IAE formulas in (Lopez et al. 
1967), disturbance rejection formulas with 20% overshoot in 
(Chien et al. 1952) and MO-tuned PI and PID controllers 
with the input disturbance compensation. Obviously, Lopez 
and Chien formulas, recommended for [ ]0.1, 1θ ∈ , are not 
suitable for large θ . Ziegler-Nichols settings give responses 
very similar to Chien settings, in both the cases. In all the 
cases the proposed settings give very satisfactory results.  
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0

0.1

0.2

0.3
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Fig. 9. 1( )F s  load disturbance, step response. Settings: MO 
(solid line), Chien (dashed), Lopez (dash-dotted), Haalman 
(PI) (dotted)       
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Fig. 10. 2 ( )F s load disturbance, step response. Settings: MO 
(solid line), Chien (dashed), Lopez (dash-dotted), Haalman 
(PI) (dotted)           
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