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Two-state bilinear predictive control for
hot-water storage tank

Zbigniew Ogonowski ∗

∗ Institute of Automatic Control, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland

(Tel: +48 32 2371084; e-mail: Zbigniew.Ogonowski@polsl.pl)

Abstract: The paper presents original predictive algorithm for use in two-state (or binary)
input control of nonlinear systems which are described with state-constrained bilinear models.
It is shown in the paper, that instead of non-linear continuous-time model, non-stationary
linear discrete-time model can be used to predict the system response. On the other hand, state
constrains can be attached to the criterion index to be minimized in the predictive control law.
This inclusion assures the closed-loop stability of the control system and simplifies minimization
problem. The proposed algorithm is particularly valuable for applications in heating systems
where bilinearity follows from the heat exchange due to flow of liquid medium and constrains
concern temperature regime. Application of the algorithm to control a hot water tank is
presented in the paper. The tank is modeled with stratified model.

Keywords: bilinear models, predictive control, non-linear state observer, stratified models,
hot-water tank.

1. INTRODUCTION

High hopes that were associated with non-linear predictive
control to be a general control methodology proved to
be futile at the turn of the century. Great ferment that
the works of Michalska and Mayne (e.g. Michalska and
Mayne (1993)) raised in the middle of nineties collapsed
after confrontation with requirements of a real-world ap-
plications. The biggest problem posed optimization task
which needs to be solved in every sampling period thus the
applications have been restricted to slow processes Kwon
and Han (2005). This problem was clearly stated at the
end of nineties (Allgower and Zheng (2000), ”Nonlinear
Model Predictive Control: Challenges and Opportunities”
by D. Mayne, pp. 23–44), and still remains unsolved. On
the other hand special cases of nonlinearities has been
studied meanwhile Rossiter (2004). One of the most deeply
explored is the case of linear dynamics and input/state
constrains Maciejowski (2002).

In the same spirit this paper explores bilinear systems with
state constrains and two-state input signals as yet another
special case of nonlinear system to be controlled. There are
number of processes being modeled with bilinear models.
The most important group of such systems form heat
transfer processes where the energy is transported with
liquid fluids ASHRAE (2009). The bilinear model of heat
exchange arises due to states (temperatures) are multiplied
by the control signal (liquid flow). Additionally, states
are constrained by technological requirements and inputs
are constrained because heat sources and pumps can be
only switched on or off. Usually control systems apply
simple relay controllers where so called cut-off method
allows for compliance with constrains. Quality of the relay-
based control can be hardly improved. There are only few

knobs to be used as hysteresis or dynamical corrections
Skoczowski (1981).

The paper presents original predictive algorithm for use
in two-state input control of nonlinear systems which are
described with state-constrained bilinear models.

Bilinear models are described in sec. 2. Based on these
models the predictive control algorithm with two-state
input and state constrains is derived in sec. 3. Discrete
in time nature of predictive control needs discretization
of the bilinear model. It is shown in sec. 3, that instead
of non-linear continuous-time model, non-stationary linear
discrete-time model is obtained. This technique is similar
to so called successive linearization (e.g. in L. Magni and
Allgower (2009), M. Cannon et.all. ‘Successive Lineariza-
tion NMPC for a Class of Stochastic Nonlinear Systems’,
pp. 249-262). However, proposed method uses exact model
and does not impose linearization errors. State prediction
on the assumed horizon is made on the basis of obtained
model. It follows form the general theory of nonlinear
predictive control Rossiter (2004) that closed-loop stability
is assured by augmenting the criterion function to be
minimized with final state weighting. This is done here
by inclusion of the constrains into the criterion function
as a penalty term.

Sec. 4 presents state observer for bilinear systems. This is
the case of application example namely heating systems
where bilinearity follows from the heat exchange due to
flow of liquid medium and constrains concern temperature
regime. Application of the algorithm to control a hot water
tank is presented in sec. 5. The tank is modeled with
so-called stratified model. Usually it is not possible to
measure all states which follow from the stratification thus
observer is necessary.
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2. BILINEAR PROCESSES

Bilinear systems are the special nonlinear systems where
linearity concerns separately state and control variables
but not jointly. The general form of the bilinear model
can be represented by the following:

Ẋ(t) = AX(t) +B0U(t) +

m∑

k=1

BkX(t)uk(t) + E(t) (1)

where X ∈ Rn and U ∈ Rp (uk represents k-th element
of U). It is clear that A ∈ Rn×n, B0 ∈ Rn×p and Bk ∈
Rn×n, k = 1, 2, . . . ,m. Operating point is assumed zero
(the model (1) represents deviations from the operating
point). Term E(t) represents disturbances. It is assumed,
that after sampled, disturbances can be modeled by white
noise. This assumption allows for optimal in mean-square
sense prediction of the state by using the model (1) with
disturbances term omitted (optimal prediction of white
noise is equal to zero).

Modern system theory made possible and stimulated ex-
pansion and deepening of research so that the intrinsic lim-
its of linear models appear more and more evident. There
are number of disciplines where bilinear models found
applications e.g. industrial processes, biology, economics,
ecology agriculture etc. This type of nonlinear dynamical
models have been rigorously explored in the last three
decades. It has been shown Mohler (1991) that bilinear
systems are better controllable in general then linear sys-
tems. They offer better possibility in control performance.
Still interest in these systems is very high. The structural
theory is fairly well established and in particular there are
several satisfactory contributions on controllability, mainly
for homogeneous in the state bilinear systems. Also, with
respect to mathematical modeling problems, the available
results are quite definite.

3. PREDICTIVE TWO-STATE CONTROL OF
BILINEAR SYSTEM WITH CONSTRAINS

In two-state control it is assumed that elements uk of the
control vector variable U can achieve only 0 or 1 value.
Inequality state constrains are also involved, and can be
expressed in general form as

ΩX(t) ≤ Xcon. (2)

Matrix Ω allows to easily limit on the maximum value
of state variable (e.g. temperature cut-off) as well as the
value of the acceptable range of states (e.g. output temper-
ature of the heating system). Control predictive algorithm
is formulated as discrete in time and zero-order holder of
the control signal is assumed. The essence of the predictive
control algorithm synthesis is solving of the optimization
task in every sampling period. The objective function of
the optimization task is formulated as a difference between
predicted state trajectory and reference trajectory (usually
equal to assumed set-points in the future) according to
assumed prediction horizon. The optimizing criterion is
the function of future controls, however, after optimization
task is solved, only first element of the solution (nearest
control) is applied and the whole procedure is repeated in
the next sampling period (receding horizon technique).

Let the current moment in time is denoted by ti, and
sampling period Ts. Then: ti+j = ti + j · Tp. Usually
objective function is defined in the following quadratic
form:

J(U(ti+j)|j=0,1,...,N−1) =

N∑

j=1

eTx (ti+j)Qex(ti+j) +

(3)
+ UT (ti+j−1)RU(ti+j−1)

where

ex(ti+j) = X(ti+j −Xsp) (4)

is j-step prediction of the difference between states X
and their set-points Xsp. Positive (semi)definite matrices
Q and R as well as the prediction horizon N form the
algorithm’s parameters. Constrains (2) of the optimization
task should be fulfilled in every sampling period ti+j , j =
1, 2, . . . , N . Obviously, in general it is not possible to assure
the existence of such control sequence U(ti+j)|j=0,1,...,N−1,
that the constrains are fulfilled because initial conditions
can be out of the constrains. Thus it is much simpler
to include the constrains into the criterion function and
allows penalty method for searching the optimal solution.
This also simplifies the searching algorithm because the
optimization task is now constrains-free. Finally, the cri-
terion function takes the form

J(U(ti+j)|j=0,1,...,N−1) =

N∑

j=1

eTx (ti+j)Qex(ti+j) +

(5)
+ UT (ti+j−1)RU(ti+j−1) + ϕ(ΩX(ti+j)−Xcon)

where ϕ is scalar penalizing function with the vector
argument equal to exceeding the limits.

The above formulation of the predictive control algorithm
allows for simple inclusion of requirements to keep the
states within the proper range. There are two ways to do
that:

• Determine set-points for the certain state and choose
the proper weighting matrix Q in (5) depending on
the role of the state in the system.

• Form the constrains (2) in such a way, that the range
of certain state is properly narrowed.

The predicted states in objective function (5) should be
determined from the model (1). Zero-order holder allows
for the following representation of (1):

Ẋ(t) =

(
A+

m∑

k=1

uk(ti+j−1)Bk

)
X(t) +B0U(t),

(6)
t ∈ [ti+j−1, ti+j ].

Equation (6) is linear and its solution at the end of the
sampling period is as follows:

X(ti+j) = Φi+j−1X(ti+j−1) + Γi+j−1U(ti+j−1) (7)

where

Φi+j−1 = e(A+
∑

m

k=1
uk(ti+j−1)Bk)Tp (8)

Γi+j−1 =

Tp∫

0

e(A+
∑

m

k=1
uk(ti+j−1)Bk)τdτB0. (9)
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Starting with initial state X(ti) the succeeding iterations
are performed according to (7 – 9) for j = 1, 2, . . . , N to
determine the whole trajectory of the state on the horizon
N .

Number of possible control vector values on the horizon
N is equal to m · 2N . If the sampling period is not to
short then the prediction horizon need not to be large and
the optimization task can be solved by bruteforce method.
Similar approach was used in Ogonowski (2011b)

It should be emphasized that in every sampling period
matrices Φi+j−1 and Γi+j−1 have to be determined. These
matrices depend on input signal and change in every step.
Thus the model (7) is nonstationary. Calculation of Φi+j−1

and Γi+j−1 needs application of special algorithms e.g.
squaring and scaling Higham (2005). If sampling period
is short and complex calculations are not possible then
simplified model can be applied by using Euler method of
integration:

X(ti+j) = A′
i+j−1X(ti+j−1) +B′

0U(ti+j−1) (10)

where

A′
i+j−1 =

(
A+

m∑

k=1

uk(ti+j−1)Bk

)
Tp (11)

B′
0 = B0Tp. (12)

4. STATE OBSERVER FOR BILINEAR SYSTEM

To calculate state prediction it is necessary to start iter-
ation of the model (7) or (10) with current measurement
of the state X(ti). Often the only part of X is measured.
Then the state observer is necessary. The theory of bilinear
model state observer is well established (e.g. Hara and
Furuta (1976)). Assume that s elements of X vector is
measured. The state vector can be ordered to keep them
on the top, to simplify the notation:

Y (t) = (Is 0)X(t) (13)

where Is is s-dimensional unity matrix. Y represents then
vector of measured states. Equation (1) can be factorized
as follows

Ẋ(t) =

[
A11 A12

A21 A22

]
X(t) +

[
B0,1

B0,2

]
U(t) +

(14)

+

m∑

k=1

[
Bk,11 Bk,12

Bk,21 Bk,22

]
X(t)uk(t)

whereA11, Bk,11 ∈ Rs×s, A12, Bk,12 ∈ Rs×(n−s),A21, Bk,21

∈ R(n−s)×s, A22, Bk,22 ∈ R(n−s)×(n−s), B0,1 ∈ Rs×m,

B0,2 ∈ R(n−s)×m. In Hara and Furuta (1976) it was
proven, that if the following two conditions are kept

Re [eig (A22 +HA12)] < 0 (15)

Bk,22 +HBk,12 = 0 k = 1, 2, . . . ,m (16)

then there exists state observer of minimal order which is
realized with the following dynamical system:

Ż(t) = ÂZ(t) + B̂0Y (t) +

m∑

k=1

B̂kY (t)uk(t) + ĜU(t) (17)

X̂(t) = ĈZ(t) + D̂Y (t) (18)

where

Â = A22 +HA12 (19)

B̂0 = A21 +HA11 − (A22 +HA12)H (20)

B̂k = Bk,21 +HBk,11 (21)

Ĝ = B0,2 +HB0,1 (22)

Ĉ =

[
0

In−s

]
(23)

D̂ =

[
Is
−H

]
. (24)

It was proven that the error X̂(t) − X(t) and all its
derivatives tends to zero independently on U and initial
conditions X(t0) and Z(t0).

5. APPLICATION

The proposed algorithm is particularly valuable for appli-
cations in heating systems where bilinearity follows from
the heat exchange due to flow of liquid medium. Con-
strains concern temperature requirements. Application of
the presented predictive algorithm will be now shown on
the example of 300 liters hot water tank. The tank is
equipped with one heating coil pipe placed in the upper
part of the tank. The coil is fed with on-off controlled
boiler (16200 W) throughout water as a heating medium.
The tank has been equipped with measurement system
Ogonowski (2010) containing termo-elements and hot wa-
ter flow meter. The tank is modeled with stratified model.

5.1 Model of the hot water tank

Hot water tank is a vertically standing cylinder equipped
with M heating pipe coils distributed in different parts
along the vertical axis. Cold water water enters the tank
bottom and is charged on top. Thus temperature gradient
occurs. After division of the cylinder onto S layers the
basic heat balance can be written as follows:

Qwn =

M∑

m=1

Qm(n) −Qun −Qsn, (25)

where Qwn is the heat accumulated in the n-th layer,
Qm(n) is the heat transmitted by the m-th source to the
n-th layer, Qun is the heat applied from n-th layer and
Qsn is the heat loses of the n-th layer to the surroundings.
Let consider single layer which is driven with a heat source
transmitting Qp through the heating medium of the flow
Fz with enter temperature Tzi and exit temperature Tzo.
Could water has got the temperature on the input equal
to Twi and on the output Two. The tank is surrounded by
the environment of the temperature Tsur. Heat exchange
describes the following two differential state equations:

ρCwV
dTwo

dt
= ρCwFz(Tzi − Tzo)− ρCwFw(Two − Twi)−

−λA

d
(Two − Tsur), (26)

ρCwVw
dTzi

dt
= Qp−ρCwFz(Tzi−Tzo)−

λwAw

dw
(Tzi−Tsur),

where ρ, Cw represents density and specific heat of the
water respectively, V , Vw are the volumes of the layer and
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pipe coil, λ, λw are heat permeability coefficient of the tank
wall and pipe coil respectively. In general, by division of
the both sizes of (26) by ρCwV and ρCwVw, and taking
into account heat exchange between layers, one can derive
the following:

dT n
wo

dt
= bn1F

n,m
z (T n

zi − T n
wo)− bn2Fw(T

n
wo − T n−1

wo )−

bn3 (T
n
wo − Tsur)− bn4 (T

n
wo − T n−1

wo ) + bn5 (T
n+1
wo − T n

wo),(27)

dTm
zi

dt
= pn1Q

m
g − pn2F

m
z (Tm

zi − T n
wo)− pn3 (T

m
zi − Tsur),

where superscript n denotes number of layer, n + 1 is
the number of upper layer and n − 1 is the number of
lower layer. m is the number of heat source which is
directly coupled with the n-th layer. In equation (27)
physical coefficients has been exchanged with constants b
and p. First evaluation of b and p can follow from physical
meaning. The final ones, however, have to be identified
because stratified model is simplification of the real plant
which has got a distributed parameter nature. Addition-
ally, dependent variable Tzo has been excluded from the
above equations which is possible under assumption that
heat transfer driving force is the average temperature Tzi

and Tzo Marlin (1995).

5.2 Parameter identification

Simple method for identification of (27) model bases on
distinguishing the periods of time where some parts of
the model remain zero. This follows from specific of the
model (27) e.g. if heat source or pump does not work then
respective signals Fz or Fw are zero. The model (27) can
be identified part by part with properly chosen data.

It is assumed three-layered structure of the model thus the
model takes form:

dT 3
wo

dt
= b31Fz(Tzi − T 3

wo)− b32Fw(T
3
wo − T 2

wo)−

−b33(T
3
wo − Tsur)− b34(T

3
wo − T 2

wo), (28)

dT 2
wo

dt
= b21Fz(Tzi − T 2

wo)− b22Fw(T
2
wo − T 1

wo)−

−b23(T
2
wo − Tsur)− b24(T

2
wo − T 1

wo) + b25(T
3
wo − T 2

wo), (29)

dT 1
wo

dt
= −b12Fw(T

1
wo − Twi)− b13(T

1
wo − Tsur) +

+b15(T
2
wo − T 1

wo), (30)

dTzi

dt
= p1Qg − p2Fz(Tzi − T 3

wo)− p3(Tzi − Tsur). (31)

Formulation (28)-(31) can be transformed to (1) with the
following:

X =

⎡
⎢⎢⎣

T 1
wo

T 2
wo

T 3
wo
Tzi

⎤
⎥⎥⎦ , U =

[
Fz

Qg

]
,

A =

⎡
⎢⎢⎣

−(b13 + b15) b15 0 0
b24 −(b23 + b24 + b25) b25 0
0 b34 −(b33 + b34) 0
0 0 0 −p3

⎤
⎥⎥⎦ ,

(32)

B0 =

⎡
⎢⎣
0 0
0 0
0 0
0 p1

⎤
⎥⎦ , B1 =

⎡
⎢⎣
0 0 0 0
0 −b21 0 b21
0 0 −b31 b31
0 0 p2 −p2

⎤
⎥⎦ , B2 = 04×4

E(t) =

⎡
⎢⎢⎣

b13Tsur + b12Fw(Twi − T 1
wo)

b23Tsur + b22Fw(T
1
wo − T 2

wo)
b33Tsur + b32Fw(T

2
wo − T 3

wo)
p3Tsur

⎤
⎥⎥⎦ .

Note, that disturbance vector E(t) is added to the right
hand side of (1). E contains two components. The first de-
pends on Tsur and changes sufficiently slow to be accepted
as constant. The second depends on Fw and changes much
faster (see Figure 1). Analysis of Fw shows its white char-
acter. This justifies assumption, that disturbances term
can be omitted in prediction.

It can be easily verified that if the heating is off (Qp, Fz =
0) and no hot water is use (Fw = 0) then all state are equal
to Tsur. Assuming Tsur = const one can use deviation
model where X means deviations from Tsur.
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Fig. 1. Example of data for identification. T 3
wo - blue, T 2

wo
- green, Tzi - red, Fw - black.

Figure 1 presents example of data. There are three temper-
atures measured: hot water (output of the tank) T 3

wo – blue
line, temperature at half height of the tank T 2

wo (green) and
temperature of the heating medium Tzi (red). Lower part
of the tank keeps constant temperature T 1

wo = 10oC which
need not to be measured. Tsur = 25.5oC was assumed
constant as well. On-off control signal were boiler power
Qg = 0 or 16200 and heating medium flow Fz = 0 or 0.5.
It is interesting to notice the behavior of T 3

wo temperature:
if the heating is off (Tzi decreases) and hot water use
appears (black line) then T 3

wo increases for some time while
T 2
w0 decreases. This phenomenon follows form placement

of the measurement element – close, but outside of the
tank. If the pump is off the pipe gets colder despite of the
high inner temperature. After disturbance occurs pipe gets
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warmer despite temperature of cold water at the input of
the tank is much lower then the inner temperature.

After carefully chosen periods it became possible to deter-
mine parameters of three-layer model Ogonowski (2011a)
as presented in Table 1.

Table 1. Parameters of three-layer model.

Layer/
Parameter

n = 1 n = 2 n = 3

b1 0 0.019 0.025

b2 0.73 0.071 0.067

b3 0.00005 0.00093 0.0058

b4 0 0.00076 0.0049

b5 0.00001 0 0

p1 0.13

p2 0.015

p3 0.005

5.3 Standard rely control

In practice, standard control system of hot water tank uses
two relays. The first (with hysteresis) stabilizes T 2

wo on the
prespecified set-point T 2

wo,sp. The second realizes so called
cut-off algorithm: if Tzi exceeds Tzi,cut then the boiler is
switched off, however pump is still on until the first rely
is on. This very simple algorithm is robust and ensures
the maintenance of hot water volume on some level due
to middle temperature is stabilized instead of the output
one. The only drawback seems indirect stabilization of
the output temperature. Thus, T 2

wo,sp has to be properly
chosen (usually by trial and error method).
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Fig. 2. Results of the standard on-off control performance.
T 3
wo - red, T 2

wo - green, Tzi - cyjan, Fw - black, Qp -
blue (scaled to 10-15), Fz - magenta (scaled to 20-25).

Figure 2 demonstrates the results of the standard control
under real-world operations. This means not only real-
world experimentation in the environment sense, but also
that the control system was tested during normal using of
the tank. Disturbances (hot water use) caused a decrease
in output temperature and control system reaction. Set
point for middle temperature is T 2

wo,sp = 28oC and is kept

properly (green). Mean value of the output temperature
T 3
wo is equal to 46oC (red). Variance if T 3

wo is relatively
large, however, one should remember that T 3

wo is controlled
indirectly.
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Fig. 3. Detail of the figure 2.

Detail of Figure 2 is presented in Figure 3 and explains
on-off algorithm performance. After T 2

wo reached 28oC
(green), pomp Fz (magenta) and boiler Qp (blue) gets on
(time 3.98). Tzi (cyjan) increases fast and after reached
cut-off temperature Tzi,cut = 54oC signal Qp starts switch-
ing. In this time Fz remains on because T 2

wo < T 2
wo,sp =

28oC. After T 2
wo reached 300C (28+2oC of hysteresis) both

control signals are off. Then, due to succeeding use of hot
water (black disturbances) T 2

wo decreases and the next
reaction of the controller takes place (time about 4.03).
Note the phenomenon of temporary increase of T 3

wo after
hot water use.

5.4 Predictive control

Observer. Standard relay control does not need T 3
wo

measurement (only T 2
wo and Tzi are necessary). Thus

the tanks are not equipped with inner (i.e. placed in
the probe) measuring thermoelement. Even if the outer
measurement is possible (i.e. using clip-on temperature
sensor) the phenomenon described above disturbs the
result significantly thus the measurement can be hardly
used for control. To conclude, observer of T 3

wo is necessary.
In fact, there is also T 1

wo to be observed because it is not
measured. However, bottom part of the tank has constant
temperature, or it changes in significantly small range,
thus the result of the observation has little influence on
the control system.

According to (13) the states are rearranged to the following
form:

X =

⎡
⎢⎢⎣

T 2
wo
Tzi

T 3
wo

T 1
wo

⎤
⎥⎥⎦ (33)
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and vector of measurement Y can be written as:

Y (t) = (I2 0)X(t) (34)

where I2 is unity matrix of 2 × 2 size. The task of the
observer is to determine

X̂ =

⎡
⎢⎢⎣

T 2
wo
Tzi

T̂ 3
wo

T̂ 1
wo

⎤
⎥⎥⎦ (35)

which elements T̂ 3
wo and T̂ 1

wo tends sufficiently fast to
T 3
wo and T 1

wo independently on initial conditions and
disturbances. The matrices of the model (14) are as follows

A11 =

[
−(b23 + b24 + b25) 0

0 −p3

]
, A12 =

[
b25 b24
0 0

]

(36)

A21 =

[
b34 0
b15 0

]
, A22 =

[
−(b33 + b34) 0

0 −(b13 + b15)

]

B0,1 =

[
0 0
0 p1

]
, B0,2 =

[
0 0
0 0

]
(37)

B1,11 =

[
−b21 b21
0 −p2

]
, B1,12 =

[
0 0
p2 0

]

(38)

B1,21 =

[
0 b31
0 0

]
, B1,22 =

[
−b31 0
0 0

]

and B2,11 = B2,12 = B2,21 = B2,22 = 02, where 02 is zero
matrix of 2× 2 size.

It can be easily checked that the condition (16) takes the
form:

H =

⎡
⎣ h11

b31
p2

h21 0

⎤
⎦ (39)

Characteristic equation of a matrix

Â = A22 +HA12 =

[
h11b

2
5 − b33 − b34 h11b

2
4

h21b
2
5 h21b

2
4 − b13 + b15

]
(40)

has got the following form

λ2 + αλ+ β = 0 (41)

where:

α = −h11b
2
5 + (b33 + b34)− h21b

2
4 + (b13 + b34), (42)

β=h11b
2
5(b

1
3+b15)+h21b

2
4(b

3
3+b34)+(b13+b15)(b

3
3+b34) (43)

It follows from the Hurwitz criterion that the condition
(15) is fulfilled if

α > 0 i β > 0 (44)

This can be transformed into two cases:

If b25 = 0

⎧
⎨
⎩

h11 −arbitral

h21 <
b13 + b15

b14

(45)

If b25 �= 0

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h11 < −b24
b25
h21 +

b33 + b34 + b13 + b15
b25

h11 < −b24(b
3
3 + b34)

b25(b
1
3 + b15)

h21 +
b33 + b34

b25

(46)

Derivation of (45) and (46) used fact, that bki ≥ 0.
Using parameters of the model given in Table 1 one
obtains: h21 < 0.0789 and h11 to be freely chosen. The
choice influences convergence of the observer. Speed of
the convergence follows from eigenvalues of Â. In the case
discussed (b25 = 0 – see Table 1), the eigenvalues are equal
to:

λ1 = −b33 − b34
(47)

λ2 = h21 − b13 − b15
It is clear form (47) that λ1 does not depend on H , thus
the speed of convergence can be shaped to a small extent
by changing only λ2. Finally the following values has been
chosen:

H =

[
0 1.667

−10 0

]
. (48)

Example of application. Set-points have been deter-
mined for the states as follows:

Xsp =

⎡
⎢⎢⎣

T 2
wo,sp

Tzi,sp

T 3
wo,sp

T 1
wo,sp

⎤
⎥⎥⎦ =

⎡
⎢⎣
28
54
46
10

⎤
⎥⎦ . (49)

Sampling time has been chosen Ts = 1 min. The model
(1) has been discretized with simple Euler method (10).
Constrains can be summarized as

ΩX̂ = [0 1 0 0]

⎡
⎢⎢⎣

T 2
wo
Tzi

T̂ 3
wo

T̂ 1
wo

⎤
⎥⎥⎦ ≤ 54oC (50)

One can notice that the control system influences of Tzi

in two ways (set-point and constrains). This problem
does not disappear after inclusion of the constrains into
the criterion function (5). However, proper choice of the
weighting matrix Q transfres the responsibility of Twzi

control on the penalizing function:

Q =

⎡
⎢⎣
q1 0 0 0
0 0 0 0
0 0 q2 0
0 0 0 0

⎤
⎥⎦ , q1 ≥ 0, q2 ≥ 0. (51)

Note, that the second row and column is zero. Control
weighting matrix is assumed to be diagonal as well

R =

[
r1 0
0 r2

]
, r1 ≥ 0, r2 ≥ 0. (52)

Penalizing function is assumed to the Heaviside one

ϕ
(
ΩX̂(·)−Xcon

)
= α1(Tzi(·)− 54oC), α > 0. (53)

The above formulated algorithm has bee tuned by trial and
error method using simulations which has been conducted
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with the disturbances that had been measured during relay
control experiment (see Figure 2). The results of tuning are
as follows: N = 4, α = 150, q1 = q2 = 1.36, r1 = r2 = 0.12.
Figure 4 presents the results of the predictive control
algorithm performance.
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Fig. 4. Results of the predictive control algorithm perfor-
mance. T 3

wo - red, T 2
wo - green, Tzi - cyjan, Fw - black,

Qp - blue (scaled to 10-15), Fz - magenta (scaled to
20-25).

Obviously, there is no possibility to use the same dis-
turbance signal as in relay case, because experiment in
real-life environment can not be repeated. However, it can
be noted significantly better stabilization of the output
T 3
wo temperature of the hot water (red line). On the other

hand, stabilization of the middle T 2
wo temperature is worse

(green) but yet this state is not important from the user
needs view point. This can be seen e.g. between 2.5 and 3.5
[day]. Even in the absence of hot water outlets, reaction
of the control algorithm takes place. This is due to the
existence of feedback from observed T 3

wo which decreases
because the tank cools down.

One would expect increase of the fuel consumption due to
more frequent reaction of the control system when com-
pare with the standard relay controller. This is not true.
After much longer tests it became clear that predictive
control is significantly economical. Long term observations
proved about 9.5% fuel save when compare with relay
control. The reason probably follows from the fact that
predictive control takes into account energy price while
minimizing objective function due to the term UTRU .
Standard controller does not take into account energy
consumption at all.

6. CONCLUSION

Predictive control algorithm with state constrains allows
for much better control performance then standard relay
controllers. However, it is paid for with difficulty of tuning.
There are number of parameters that should be properly
chosen. What is more, quality of control depends on the

quality of the model, because the prediction depends di-
rectly on model accuracy and indirectly on precision of
observer which in turns depends on the model. Two further
directions of research seems necessary to be undertaken.
The first is multilayering of the control system structure
which allows for application of upper-layer optimization of
the controller parameters and operating point. The opti-
mization can directly take into account fuel consumption.
The second direction is adaptation of the model (or model
self-tuning). It is possible due to structure of the model
is known (stratification). Additional problem could be
robustness of the control system on the model inaccuracy.

The paper presents application of the proposed algorithm
to three layered model. The volume of the tank being
tested allows for such stratification. Large industrial tanks
need more precise stratified model which are build with
greater number of layers. The theory, however remains the
same and can be directly used.
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