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Abstract: The paper presents an innovation of the robust decentralized controller design for 
multivariable uncertain systems within the setting of the Equivalent Subsystems Method (ESM). The aim 
of the proposed design procedure is to guarantee robust stability and plant-wide nominal performance in 
terms of maximum overshoot achieved through phase margins specified for equivalent subsystems. The 
developed design procedure is illustrated by an example.  
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1. INTRODUCTION 

When designing decentralized control (DC), performance 
objectives can be of two basic types: a) achieving required 
performance in different subsystems; or b) achieving plant-
wide desired performance. The Nyquist-based frequency 
domain decentralized controller design technique for 
performance called “Equivalent Subsystems Method” (ESM) 
(Kozáková et al., 2009a, b) belongs to the latter group. 
According to it, the DC design for plants described by 
transfer function matrices is performed through independent 
designs for equivalent subsystems that are actually Nyquist 
plots of decoupled subsystems shaped by a selected 
characteristic locus of the interactions matrix. It has been 
proved that local controllers independently tuned for stability 
and specified feasible performance in terms of degree of 
stability in equivalent subsystems provide a decentralized 
controller guaranteeing the very degree of stability of the full 
system. In (Kozáková et al., 2010), the ESM design 
technique has been used to design digital decentralized 
controller for specified phase margin thus guaranteeing plant-
wide maximum overshoot by applying discrete Bode plots of 
equivalent subsystems,.  
Application of the ESM in the design for robust stability and 
nominal performance can be found in (Kozáková and Veselý, 
2007; 2008; 2009), (Kozáková et al., 2009a) always in a two-
stage design methodology: first, the DC for nominal 
performance is designed according to ESM, and afterwards, 
fulfillment of the robust stability conditions is examined; if 
robust stability is not achieved either controller parameters 
are to be modified, or the redesign is to be carried out with 
modified performance requirements.   
This paper presents a robust DC design methodology based 
on direct integrating of robust stability conditions in the 
ESM. In this way, local controllers of equivalent subsystems 
are designed with regard to robust stability, and nominal 
performance in terms of maximum peak of the 

complementary sensitivity (or sensitivity, depending on 
uncertainty type) that provides information about the 
maximum overshoot and is transformable into lower bound 
for the phase margin of equivalent subsystems.  
The paper is organized as follows: Preliminaries and problem 
formulation are in Section 2, principles of the Equivalent 
Subsystems Method (ESM) are revisited in Section 3. Section 
4 presents the direct robust DC design procedure in the ESM 
setting. Theoretical results are demonstrated on an example 
in Section 5.  

2. PRELIMINARIES AND PROBLEM FORMULATION 

Consider a MIMO system described by a transfer function 

matrix mmR)s(G ×∈ , and a controller mm
R)s(R

×∈  in the 
standard feedback loop (Fig. 1); Necessary and sufficient 
closed-loop stability conditions are stipulated by the 
Generalized Nyquist Stability Theorem applied to the closed-
loop characteristic polynomial (CLCP) 
 

)]s(QIdet[)s(Fdet +=  (1) 

where )s(R)s(G)s(Q = mmR ×∈ .  

w e y u 

d 

R(s) G(s) 

 

Fig. 1. Standard feedback configuration 

 
In the sequel, D denotes the standard Nyquist D-contour in 
the complex plane; Nyquist plot of )s(g is the image of the 

Nyquist contour under g(s); )]s(g,k[N  is the number of 

anticlockwise encirclements of (k, j0) by the Nyquist plot of 
g(s). Characteristic functions of )s(Q  are the set of m 

algebraic functions m...,,1i),s(qi =  given as 
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m...,,1i0)]s(QI)s(qdet[ mi ==−  (2) 
 

Characteristic loci (CL) are the set of loci in the complex 
plane traced out by the characteristic functions of 
Q(s), Ds ∈∀ . The CLCP (1) expressed in terms of 
characteristic functions of  )s(Q  reads as follows 

∏ +=+=
=

m

1i
i )]s(q1[)]s(QIdet[)s(Fdet  (3) 

Theorem 1. (Generalized Nyquist Stability Theorem) 
The closed-loop system in Fig. 1 is stable if and only if 

a. Ds)s(Fdet ∈∀≠ 0  

b. ∑ =+=
=

m

1i
qi n)]}s(q1[,0{N)]s(Fdet,0[N  (4) 

where ))s(QI()s(F +=  and nq is the number of unstable 

poles of  Q(s).  
Let the uncertain plant be specified as a set Π of N transfer 
function matrices 

N,...,2,1k)},s(G{ k ==Π  where  { }
mm

k
ij

k )s(G)s(G
×

=

 (5) 
The set of unstructured perturbations DU is defined as follows 

)]}j(E[max)(

),()]j(E[:)j(E{:D

max
k

maxU

ωσω

ωωσω

=

≤=

l

l

 (6) 

where )(ωl  is a scalar weight function on the norm-bounded 

perturbation ( ) mmRs ×∈∆ , 1ω∆σ ≤)]j([max  over the given 

frequency range, )(max ⋅σ  is the maximum singular value of 

(.); hence )j()()j(E ω∆ωω l= . 

For unstructured uncertainty, the set Π  can be generated by 
either additive (Ea), multiplicative input (Ei) or output (Eo) 
uncertainties, or their inverse counterparts (Eia Eii Eio) used 
for uncertainty associated with plant poles located in the 
closed right half-plane. Only the additive and inverse additive 
uncertainties will be addressed in detail; relations for other 
uncertainty forms can be derived by analogy. 
Denote )s(G any member of Π , )s(G0 the nominal model, 

and )(j ωl  the scalar weight on a normalized perturbation. 

Individual uncertainty forms generate the related sets jΠ for 

j=a, ia.  
 
Additive uncertainty: 

N,,,k)],j(G)j(G[max)(

)}j()()j(E

),s(E)s(G)s(G:)s(G{:

k
max

k
a

aa

aa

Kl

l

21ωωσω

ω∆ωω

Π

0

0

=−=

≤

+==

 (7) 

Inverse additive uncertainty 

N,,,k

},)]j(G[)]j(G{[max)(

)}j()()j(E

,)]j(G)s(EI)[s(G)s(G:)s(G{:

k
max

k
ia

iaia

iaia

K

l

l

21

ωωσω

ω∆ωω

ωΠ

11
0

1
00

=

−=

≤

−==

−−

−

 (8) 

The standard feedback loop with uncertain plant can be recast 

into the ∆−M  structure (Fig. 2) where ( ) mmRs ×∈∆ is the 

norm-bounded complex perturbation. For the uncertainty 
forms (7), (8) the corresponding M(s) are respectively  
 

1
0a )]s(R)s(GI)[s(R)s()s(M −+= l  (9) 

)s(G)]s(R)s(GI[)s()s(M 0
1

0ia
−+= l  (10) 

 
 

 

 

 

Fig. 2. ∆−M  structure  

 
According to (Skogestad and Postlethwaite, 2005) if M(s) is 
stable (nominal stability) and the perturbation )s(∆  is stable, 

then the ∆−M  system is stable for all )s(∆ : 1)(max ≤∆σ  if 

and only if   

ωωσ ∀< ,1)]j(M[max  (11) 

Conservatism of the robust stability condition (19) can be 
relaxed by “structuring” the additive uncertainty to yield the 
additive affine-type uncertainty )s(Eaf  (Kozáková and 

Veselý, 2007; 2008)  

∑=
=

p

1i
iiaf q)s(G)s(E  (12) 

where mm
i R)s(G

×∈ , i=0,1, …, p are stable matrices, p is 

the number of uncertainties defining p
2 polytope vertices that 

correspond to individual perturbed models; qi are polytope   
parameters. The related afΠ is  

}qq,q,qq

,q)s(GE

,E)s(G)s(G:)s(G{:

maximinimaximinii

p

i
iiaf

afaf

0

Π

1

0

=+>∈<

∑=

+==

=

 (13) 

 

where )s(G0  is the „affine“ nominal model. In the matrix 

form, individual plants from the set afΠ  can be expressed as 

follows 

)s(QG)s(G)s(G u0 +=  (14) 

where )pm(mT
qq R]II[Q

p1

××∈= K , mmiq IqI
i ×= ,  

m)pm(T
p1u R]GG[)s(G

××∈= K   . 

Similarly to previous uncertainty forms, the feedback loop 
with uncertain plant modeled using the additive affine type 
uncertainty in Fig. 3, can be recast into the QM af −  

structure with R)RGI(G)RGI(RGM
1

0u
1

0uaf
−− +=+= . 

Stability condition for the QM af −  system is   

1)QM(
afmax <σ , (15) 

u∆ 

M(s) 

y∆ 

∆(s) 
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under the assumption maximini qqq ==0 , (14) can further be 

modified to yield  

1pq)M( 0afmax <σ   (16) 

w e y 

u∆ 

y∆ 

- 
G0(s) R(s) 

Gu(s) Q 

 
Fig. 3. Standard feedback loop with additive affine-type 
additive uncertainty  

2.1 Problem Formulation  

Consider an uncertain system with m subsystems given as a 
set of N transfer function matrices obtained as a result of 
identification in N working points of the plant operation 
range. Assume that the uncertain system be described by a 
nominal model )s(G0  and any unstructured uncertainty 

form (7), (8) or (12) where )s(G0 can be split as follows 

)s(G)s(G)s(G md0 +=   (17) 

where Ds ∈∀  

0≠= × )s(Gdet,)}s(G{diag)s(G dmmid  
)s(G)s(G)s(G dm −= 0    

A decentralized controller (DC) 

mmi )}s(R{diag)s(R ×= , 0)s(Rdet ≠  (18)  

is to be designed to guarantee stability over the whole 
operating range of the plant specified by either (7), (8) or (13) 
(robust stability) and a specified performance of the nominal 
model (nominal performance), Fig. 4.  
To solve the this problem, a frequency domain robust 
decentralized controller design technique has been developed 
(Kozáková and Veselý, 2009; Kozáková et. al., 2009b); the 
core of it is the Equivalent Subsystems Method (ESM).  
 

3. EQUIVALENT SUBSYSTEMS METHOD  

The Equivalent Subsystems Method (ESM) is a Nyquist-
based DC design method for stability and guaranteed 
performance of the full system. According to it, independent 
local controller designs are carried out for the so-called 
equivalent subsystems that are actually Nyquist plots of 
decoupled subsystems, shaped by one selected characteristic 
locus of the interactions matrix. If local controllers of 
equivalent subsystems are independently tuned for stability 
and specified feasible performance, the resulting 
decentralized controller guarantees for the full system the 
same performance as specified for equivalent subsystems. 
ESM used in the design for robustness (Kozáková et al., 
2009b) allows to consider the full nominal model, thus 
reducing conservatism of resulting robust stability conditions.  
 
The key idea behind the method is factorization of the CLCP 
(1) in terms of the split nominal system (17) under the 
decentralized controller (18)  

)s(Rdet)]s(G)s(G)s(Rdet[)s(Fdet md ++= −1   (19) 

Denote the sum of diagonal matrices in the first bracketed 
term as follows   

)s(P)s(G)s(R d
1 =+−  (20) 

where mmi )}s(p{diag)s(P ×= .  

 

w e u y + 
+ 

- 

G0(s)  

Gd(s) 

Gm(s) 

R(s) 

R1   0     …   0 

0     R2    …   0 

……………….. 

0     0   …   Rm 

G11  0     …  0 

0     G22   …  0 

………………... 

0     0  …  Gmm 

0  G12  … G1m 

G21  0 …  G2m 

……………….… 

Gm1 Gm2 …  0 

 

 Fig. 4. Standard feedback loop under decentralized controller 

 
If choosing the diagonal matrix mmk )}s(p{diag)s(P ×=  

with identical entries so as to „counterbalance” interactions 
)s(Gm  then, according to (2), the characteristic equation 

corresponding to the first r.h.s. term in (19) defines the k-th 
of the m characteristic functions of )]s(G[ m− denoted 

m,...,2,1i),s(gi = ; thus 

 

m,...2,1k,0])s(g)s(g[

]GIpdet[)]s(G)s(Pdet[

m

1i
ik

mkm

==∏ +−=

=+=+

=

 (21) 

According to the Cayley-Hamilton theorem from the 
viewpoint of stability, the interactions matrix )s(Gm  can be 

replaced by [-P(s)] yielding the important relationship 
 

)]s(R)s(GIdet[

)s(Rdet)]s(P)s(G)s(Rdet[

)}s(R)]s(G)s(G[Idet{)]s(R)s(GIdet[

eq

d
1

md

+=

=−+=

=++=+

− (22) 

where  

mm
eq
i

eq
)}s(G{diag)s(G ×=  (23) 

is a diagonal matrix of m equivalent subsystems  

m,,2,1i),s(g)s(G)s(G ki
eq
i K=+= ;  (24) 

As all matrices are diagonal, on subsystems level (22) breaks 
down into m equivalent characteristic polynomials 

m,...,,i)s(G)s(R)s(CLCP
eq
ii

eq
i 211 =+=  (25) 

Considering (21)-(25), stability conditions of Theorem 1 
modify as follows: 
 
Corollary 1. 
The closed-loop in Fig. 4 comprising the system (17) and the 
decentralized controller (18) is stable if and only if there 
exists a diagonal matrix mmi )}s(p{diag)s(P ×=  such that 

 1. ,0]GI)s(pdet[ mk =+  for fixed }m,...,{k 1∈ ; 
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2. all equivalent characteristic polynomials (25) have roots 
with 0}s{Re < ; 

3. qn)]s(Fdet,0[N =  

where )s(R)s(GI)s(Fdet += and qn  is number of open 

loop poles with 0}s{Re > . 

The design technique resulting from Corollary 1 enables to 
design the decentralized controller through designing local 
controllers for independent equivalent subsystems using any 
SISO frequency-domain design method, e.g. the Neymark D-
partition method (Kozáková et al. 2009b), standard Bode 
diagram design (Bucz et al., 2010) etc.  
 

In the originally developed ESM version (Kozáková et. al. 
2009a; 2009b) it was proved that local controllers 
independently tuned for stability and a specified feasible 
degree of stability of equivalent subsystems constitute the 
decentralized controller guaranteeing the same degree of 
stability plant-wide. In (Kozáková et al. 2010) the 
performance specification applied in ESM was based on the 
relationship between phase margins of equivalent subsystems 
and the maximum overshoot. This performance specification 
is further developed towards robust stability. 
 

4. ROBUST DECENTRALIZED CONTROLLER DESIGN 

This section deals with implementation of the ESM in the 
decentralized controller design for robust stability and 
nominal performance applicable for uncertain systems 
described as a set of transfer function matrices. The nominal 
model can be calculated either as the mean value parameter 
model (Skogestad and Postlethwaite, 2005), or the “affine” 
model, obtained within the procedure for calculating the 
affine-type additive uncertainty (Kozáková and Veselý, 2007; 
2008). Unlike the standard robust approach to DC design in 
which the diagonal model as the nominal one (interactions 
are included in the uncertainty), the ESM method applied in 
the design for nominal performance allows to consider the 
full nominal model. Model uncertainty is described by any 
unstructured uncertainty form (7), (8) or (13). 
In (Kozáková and Veselý, 2008; 2009; Kozáková et al. 
2009a) a two-stage robust DC design methodology was 
proposed based on ESM and fulfillment of the M-∆  structure 
stability conditions. The direct DC design for robust stability 
and nominal performance is the main result of this paper. 
 
4.1 Direct decentralized controller design for robust stability 

and nominal performance 

If the robust stability conditions (11) or (16) are directly 
integrated in the ESM, local controllers of equivalent 
subsystems are designed already with regard to robust 
stability. A suitable performance specification is the 
maximum peak of the complementary sensitivity TM  related 

to maximum overshoot in the full system; in equivalent 
subsystems it can be translated into lower bounds of phase 
margins according to (26) (Skogestad and Postlethwaite, 
2005)  

]rad[
MM

arcsinPM
TT

1

2

1
2 ≥








≥  (26) 

where PM is the phase margin, and MT is the maximum peak 
of the complementary sensitivity T(s)  

1−+= )]s(R)s(GI)[s(R)s(G)s(T  (27) 

As for MIMO systems  

)T(M maxT σ= , (28) 

the upper bound for the nominal complementary sensitivity 
1

000
−+= )]s(R)s(GI)[s(R)s(G)s(T  can be derived by 

substituting into (1) the uncertain system model (additive 
uncertainty is considered in the following development) 
where G0(s) is the nominal model:  
 

])RGI(RIdet[)RGIdet(

]R)G(Idet[

a

a

1
00

0

∆

∆

−+++=

=++

l

l

 (29) 

 

where the first term on the r.h.s. of is the CLCP of the 
nominal system that corresponds to the CLCPeq according to 
(22); condition for stability of the second term is determined 
using the small gain theorem. Hence the uncertain system is 
stable if and only if the nominal closed loop is stable and 
 

1∆ 1 <+ −
)RGI(R oal  (30) 

 

Considering the spectral norm and the singular value 
properties, (30) can readily be manipulated to yield the final 
condition (33). Bounds for other uncertainty forms can be 
derived by analogy. 
In case of inverse uncertainty forms, robustness bounds are 
obtained in terms of the maximum peak of the sensitivity 

)S(M maxS σ=  where 

1−+= )]s(R)s(GI[)s(S  (31) 
 

and using the lower bounds for PM in the form (Skogestad 
and Postlethwaite, 2005)  
 

]rad[
MM

arcsinPM
SS

1

2

1
2 ≥








≥  (32) 

 

Upper bounds for )]j(T[ 0max ωσ or )]j(S[max ωσ 0  for 

additive-type uncertainties are summarized below. 
 
Additive uncertainty: 

ωω
ω

ωσ
ωσ 0

0 ∀=< )(L
)(

)]j(G[
)]j(T[ A

a

min
max

l
 (33) 

 
Additive affine-type uncertainty: 

ωω
ωσ

ωσ1
ωσ 0

0

0 ∀=< )(L
)]j(G[

)]j(G[

pq
)]j(T[ AF

umax

min
max

 (34) 
Inverse additive uncertainty: 

ωω
ωσω

1
ωσ

0
0 ∀=< ),(L

)]j(G[)(
)]j(S[ IAF

maxia
max

l
  

 (35) 
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Any of the derived bounds (33), (34) or (35) for the nominal 
model can directly be implemented in the ESM due to the 
fact that performance achieved in equivalent subsystems is 
simultaneously guaranteed for the full system. The main 
benefit of this approach is the possibility to find the 
maximum overshoot of the full system in terms of 

)T(max 0σ or )S(max 0σ  for which robust stability is 

guaranteed, translate it into corresponding minimum phase 
margins required in equivalent subsystems and finally design 
local controllers for individual single input – single output 
equivalent subsystems independently. In this case the 
recommended design method for the ESM setting is the Bode 
diagram design.  
Considering performance just in terms of TM or SM  is not 

sufficient, the speed of response has to be considered as well 
which leads to considering the bandwidth frequency of the 
closed-loop system as well. In general, a large bandwidth 
corresponds to a smaller rise time, since high frequency 
signals are more easily passed on to the outputs. If the 
bandwidth is small, the time response will generally be slow 
and the system will usually be more robust. The gain 
crossover frequency 0ω is frequently used to define closed-

loop bandwidth.  

The Bode plot design procedure with regard both to the 
required phase margin and the required bandwidth is 
demonstrated in the next section on a simple example of 
SISO robust PI(D) controller design with guaranteed 
overshoot and settling time of transients. 
 

5. EXAMPLE 

Consider a SISO plant given by 3 transfer functions 
corresponding to its three different working points: 
 

1s15s50

2.1s5.0
)s(G

21
++

+
=       

3.1s15s45

3.1s5.0
)s(G

22
++

+
=  

 

8.0s15s53

7.0s5.0
)s(G

23
++

+
=  

 

Next calculations include the nominal model (as a mean 
value parameter one), the additive uncertainty )(a ωl  

according to (7) and the upper bound for the nominal 
complementary sensitivity )(LA ω according to (33). 
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Fig. 5. Robustness bound )(LA ω  for nominal complementary 

sensitivity  

The least value TA M)(Lmin =ωω  is chosen to generate the 

minimum required phase margin guaranteeing robust 
stability; in our case 66.2MT = corresponds to 

0
min 6.21PM = . 

 

-80

-60

-40

-20

0

20

M
a
g
n
itu

d
e
 (

d
B

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency   (rad/sec )  
Fig. 6.  Bode plot of the nominal system )s(G0  
 

The PI(D) controller design is carried out with regard to both 
the required phase margin and the required bandwidth, the 
latter being related to the settling time according to the 
relation 
 

s

0

s t

4

t

π
ω

π
<<  (36) 

 
 

The design philosophy is as follows:  
 

After specifying the required reqPM and settling time St , 0ω  

is calculated from (36) and the )(PM 0ω is read off. If 

req0 PM)(PM >ω , a PI controller is designed. 

If req0 PM)(PM <ω , a PD controller sK1)s(G DPD +=  is 

to be designed first to provide )(PM 0req ω  and then a PI 

controller 
s

K
K)s(G I

PPI += is designed. The resulting PID 

controller is a combination of both 

)sK1)(
s

K
K()s(G D

I
PPID ++= . 

Consider the required s60tS = which corresponds to 
1

0 s1309.0 −=ω . From the Bode plot of the uncompensated 

system in Fig. 6 and 0
0req 49)(PM =ω it is obvious that a PI 

controller will be sufficient, its resulting parameters are 

s

053.0
4602.0GPI += . Bode plot of the compensated system 

in Fig. 7 proves achieving of the required parameters. 
Closed-loop step responses of the nominal model and models 
in individual working points are in Fig. 8 and Fig. 9, 
respectively. Stability robustness is verified in Fig. 10. 
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CONCLUSIONS 

The paper deals with the decentralized PID controller design 
for robust stability and plant-wide nominal performance 

within the setting of the Equivalent Subsystems Method 
(ESM). The nominal performance for the full system 
specified in terms of maximum overshoot is achieved through 
phase margins specified for equivalent subsystems. The 
design methodology per se uses the Bode plots and is 
therefore applicable also for SISO systems. The design 
procedure is illustrated by an example. 
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Fig. 10  Robust stability verification 
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