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Abstract: This paper describes a H∞ controller design procedure for tensor product based
model of gantry crane augumented with friction model in order to minimize friction effects. The
Tensor Product (TP) model transformation is a recently proposed technique for transforming
given Linear Parameter Varying (LPV) state-space models into polytopic model form, namely,
to parameter varying convex combination of Linear Time Invariant (LTI) systems. H∞ controller
guarantee stability and L2 norm bound constraint on disturbance attenuation. H∞ controller
is found using relaxed LMIs which have proof of asymptotic convergence to the global optimal
controller under quadratic stability. Control algorithm is experimentally tested on single
pendulum gantry (SPG).

Keywords: Parallel Distributed Compensation, Linear Matrix Inequalities, Tensor Product
(TP) model transformation, gantry crane control, friction compensation.

1. INTRODUCTION

In modern industrial system, gantry cranes are widely used
for the heavy loads transfer. Fast load positioning and
load swinging minimization are conflicting requirements
imposed to the traveling crane control systems.

For the position and anti-sway control of travelling cranes,
there are several solutions, i.e., by fuzzy control, optimal
control, pole placement, etc. and each of them is reported
to be effective (Popadić et al., 2005), (Nalley and Trabia,
2000), (Omar, 2003). All these approaches are based on
linear/linearized model of gantry crane.

Recently, nonlinear control approach based on tensor prod-
uct model representation (TP) of the process is proposed
(Baranyi et al., 2003), (Petres, 2006) and successfully
applied to control of Single Pendulum Gantry process
(Kolonić et al., 2006). The TP model represents the Lin-
ear Parameter Varying (LPV) state-space models by the
parameter varying combination of Linear Time Invariant
(LTI) models.

However, none of these approaches takes into account
friction effect, which is unavoidable in real applications
(Olsson et al., 1998). This effect may seriously degrade
the performance of the control system, specially when
high precision positioning is required. As a consequence
steady state error due to static friction is common for all
these approaches. Introducing integral action in control
loop, to eliminate steady state error due to friction effects,
may result in limit cycling called hunting phenomenon, see
Hensen et al. (2003).

One way to cope with friction phenomena is to introduce
friction compensator based on friction model. The friction
model may be a-priory known or learned in an on-line
manner (Lee and Tomizuka, 1996), (Huang et al., 2000),
(Matuško et al., 2010), (Boras et al., 2010).

Another approach consider the friction effect as an un-
known disturbance and design the robust controller. In
Cheang and Chen (2000), Burul et al. (2010), H∞ con-
troller for linearised model is synthesized using loop-
shaping methodology, and experimentally proved effective.

In this paper a combination of these two approaches is
used. It is assumed that friction model is partially known,
and nominal model is identified, while its associated uncer-
tainty is considered as a disturbance. In order to cope with
nonlinear nature of the gantry crane model, as well as fric-
tion model, non-linear model of gantry crane augmented
with nominal friction model is rewritten in LPV form,
suitable for TP transformation. As a result of TP model
transformation, polytopic model of process is obtained. For
such model representation, LMI control approach is used
to design a controller (Tanaka and Wang, 2001), (Boyd
et al., 1994), (Gahinet et al., 2002). In this paper such
approach is used to synthesize H∞ controller.

The paper is organized as follows: Section II discusses the
theoretical background of TP model transformation-based
control design. Section III introduces the LPV model aug-
mented with friction and its TP transformation. Section
IV discuses the LMI relaxations used in controller design.
Section V presents the experimental results obtained on
the single pendulum gantry (SPG) experimental model,
and Section VI concludes this paper.
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2. TENSOR PRODUCT MODEL
TRANSFORMATION-BASED CONTROL DESIGN

METHODOLOGY

Consider the linear parameter-varying state-space model

(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(1)

with input u(t) ∈ Rk, output y(t) ∈ Rl and state vector
x(t) ∈ Rm. The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R(m+k)×(m+l) (2)

is a parameter-varying object, where p(t) ∈ Ω is time
varying parameter vector, where Ω is a closed hypercube
in RN , Ω = [a1, b1] × [a2, b2] × . . . × [aN , bN ]. Parameter
p(t) can also include the elements of the state vector x(t),
therefore LPV system given in Eq. (1) is considered in the
class of non-linear dynamic state space models.

The main idea of TP model transformation is to discretize
the given LPV model given in Eq. (1) over hyper rectan-
gular grid M in Ω, then via executing Higher Order Sin-
gular Value Decomposition, the tensor product structure
of given model is obtained. By ignoring singular values,
TP model of reduced complexity and accuracy can be
obtained. For more details se Petres (2006) and Tikk et al.
(2004).

Tensor product structure can be written as follows

S(p(t)) = S
N
�

n=1
wn(pn)

=

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

in=1

N∏

n=1

wn,in(pn)Si1,i2··· ,iN ,
(3)

where S ∈ RI1×I2×···IN×(m+k)×(m+l) denotes obtained
tensor, In denotes number of LTI systems in n-th dimen-
sion Ω, � denotes multiple n-mode product of a tensor by
a matrix, wn is row vector containing wn,in(pn) ∈ [0, 1]
which is corresponding one variable weighting function
defined on the n-th dimension of Ω and

Si1,i2···iN =

(
Ai1,i2···iN Bi1,i2···iN
Ci1,i2···iN Di1,i2···iN

)
, (4)

is LTI system matrix obtained by TP model transforma-
tion.

Controller is determined in same form as TP model.
Control signal is given by

u = −
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

in=1

N∏

n=1

wn,in(pn)Ki1,i2··· ,iNx (5)

where the Ki1,i2··· ,iN are corresponding LTI feedback
gains.

By using i as linear index, equivalent to the multilinear
array index with the size of I1 × I2 × · · · IN , TP model
(3) and control signal (5) can be rewritten in standard
polytopic form

S(p) =
R∑

i=1

wi(p)Si, (6)

u = −
R∑

i=1

wi(p)Ki, (7)

where R = I1 + I2 + · · · + IN and wi(p) is corresponding
weighting function.

3. TP MODEL-BASED CONTROLLER DESIGN
APPLIED TO THE SINGLE PENDULUM GANTRY

CRANE EXPERIMENTAL MODEL

3.1 Mathematical model of the gantry crane

Experimental laboratory model of Single Pendulum Gantry
(SPG) is used to emulate industrial crane application, see
Fig 1.

(a) (b)

Fig. 1. SPG photo in mechatronics laboratory a), and
schematics of the model b)

Non-linear model of single pendulum gantry (SPG) can be
described by following equations 1 :

(Mc +Mp)ẍc +Mplpα̈ cos(α)−Mplpα̇
2 sin(α) =

= Fm − Ff −Beqẋc,

(Ip +Mpl
2
p)α̈+Mplpẍc cos(α) +Mpglp sin(α) = −Bpα̇,

(8)

where Fm is DC motor force while Ff is the friction force.
Driving force obtained from DC motor is given by:

Fm =
ηgηmKgKt

rmp

1

Rm
Um. (9)

The meanings and the values of other parameters in
equations (8) and (9) are given in Table 1.

In this paper Stribeck friction model is used, see Olsson
et al. (1998). It can be described by

Ff (ẋc) = sgn(ẋc)
[
FC + (FS − FC)e−(

ẋc
vs

)δ
]
, (10)

1 Derivation using Lagrangian formulation is omitted for brevity and
can be found in (QUANSER User Manual, 1999)
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where FC is Coulomb friction, FS is static friction force,
vs is Stribeck velocity, and δ is emprirical exponent.

The parameters of the model (10) are experimentally
identified and following values are obtained:

FC = 2.70, FS = 3.10, vs = 0.10, δ = 2.
(11)

3.2 LPV model of single pendulum gantry (SPG)

Letting x = [x1 x2 x3 x4]
T

= [xc ẋc α α̇]
T

, u = Um and
w norm bounded disturbance, the equations of motion in
linear parameter varying state space form are:

ẋ = A(x(t))x+B(x(t))u+ E(x(t))w,

y = C(x(t))x+D(x(t))u+ F (x(t))w.
(12)

The system matrix in LPV form for the model (12) can be
written as:

S =




0 1 0 0 0 0
0 a1/ax a2/ax a3/ax b11/ax e1/ax
0 0 0 1 0 0
0 a4/ax a5/ax a6/ax b12/ax e2/ax
1 0 c1 0 0 0


 , (13)

where :

a1 = −(Ip +Mpl
2
p) ·
(
ηgηmK

2
gKtKm

r2mpRm
+Beq

)

a2 =
M2

p l
2
pg sin (x3) cos (x3)

x3
a3 = (M2

p l
3
p + lpMplp) sin(x3)x4 +MplpBp cos(x3)

a4 = Mplp cos(x3) ·
(
Beq −

ηgηmK
2
gKtKm

rmp

1

Rm

)

a5 = − (Mc +Mp)Mplp sin (x3)

x3
a6 = −(Mc +Mp)Bp −M2

p l
2
p cos(x3) sin(x3)x4

ax = (Mc +Mp)Ip +McMpl
2
p +M2

p l
2
p sin2(x3)

b11 = −(IpMplp)2sgn(ẋc)
[
FC + (FS − FC)e−(

ẋc
vs

)δ
]

b12 = −Mplp cos(x3)sgn(ẋc)
[
FC + (FS − FC)e−(

ẋc
vs

)δ
]

e1 = −(IpMplp)2
ηgKgηmKt

Rmrmp

e2 = −Mplp cos(x3)
ηgKgηmKt

Rmrmp

c1 = −0.614
sinx3
x3

(14)

3.3 Single pendulum ganty TP model representation

Operating area for single pendulum gantry, is selected as

Ω = [ẋcmin, ẋcmax]× [αmin, αmax]× [α̇min, α̇max]

= [−0.6, 0.6]× [−0.0873, 0.0873]× [−0.8, 0.8].
(15)

Applying the TP transformation to the model (13) yield to
the TP model representation consisting of 20 LTI models.
The LTI system matrices of the TP model are:

S1,1,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,1,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,2,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,2,1 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,3,1 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.008731 1.529 1.154

0 0 0 1.0 0 0

0 26.78 −26.08 −0.0929 −3.517 −2.653
1.0 0 0.6136 0 0 0




(16)

S2,3,1 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.008731 1.529 −1.154
0 0 0 1.0 0 0

0 26.78 −26.08 −0.0929 −3.517 2.653

1.0 0 0.6136 0 0 0




S1,4,1 =




0 1.0 0 0 0 0

0 −11.65 1.517 −0.001939 1.53 1.154

0 0 0 1.0 0 0

0 26.79 −26.08 −0.06834 −3.518 −2.654
1.0 0 0.6136 0 0 0




S2,4,1 =




0 1.0 0 0 0 0

0 −11.65 1.517 −0.001939 1.53 −1.154
0 0 0 1.0 0 0

0 26.79 −26.08 −0.06834 −3.518 2.654

1.0 0 0.6136 0 0 0




S1,5,1 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.006239 1.531 1.155

0 0 0 1.0 0 0

0 26.89 −26.13 −0.0872 −3.532 −2.665
1.0 0 0.6143 0 0 0




S2,5,1 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.006239 1.531 −1.155
0 0 0 1.0 0 0

0 26.89 −26.13 −0.0872 −3.532 2.665

1.0 0 0.6143 0 0 0




(17)

S1,1,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,1,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.000189 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.07325 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,2,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 1.153

0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 −2.647
1.0 0 0.6132 0 0 0




S2,2,2 =




0 1.0 0 0 0 0

0 −11.64 1.512 0.009566 1.529 −1.153
0 0 0 1.0 0 0

0 26.71 −26.05 −0.09477 −3.509 2.647

1.0 0 0.6132 0 0 0




S1,3,2 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.001048 1.529 1.154

0 0 0 1.0 0 0

0 26.78 −26.08 −0.07522 −3.517 −2.653
1.0 0 0.6136 0 0 0




(18)
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Table 1. PARAMETERS OF THE SPG SYSTEM

Symbol Description Value Unit

Um DC motor voltage V
Im DC motor armature current A
Rm DC motor armature resistance 2.6 Ω
Lm DC motor armature inductance 0.18 mH
Kt Motor torque constant 0.007 67 N m A−1

ηm Motor efficiency 1
Km Back electro-motive force constant 0.007 67 V s/rad
Jm Rotor moment of inertia 3.9001 × 10−7 kg m2

Ip Pendulum moment of inertia 0.007 883 8 kg m2

Kg Planetary gearbox gear ratio 3.71
ηg Planetary gearbox efficiency 1
Mc Lumped mass of the cart system 1.0731 kg
lp Pendulum length from pivot to COG 0.3302 m
Mp Pendulum mass 0.23 kg
rmp Motor pinion radius 0.006 35 m
Beq Equivalent viscous damping coeff. 5.4 N m s rad−1

Bp Viscous damping coefficient 0.0024 N m s rad−1

Fc Driving force N
g Gravitational constant of earth 9.81 m/s2

α Pendulum angle rad
xc Chart position mm

S2,3,2 =




0 1.0 0 0 0 0

0 −11.64 1.517 0.001048 1.529 −1.154
0 0 0 1.0 0 0

0 26.78 −26.08 −0.07522 −3.517 2.653

1.0 0 0.6136 0 0 0




S1,4,2 =




0 1.0 0 0 0 0

0 −11.65 1.517 0.01172 1.53 1.154

0 0 0 1.0 0 0

0 26.79 −26.08 −0.09978 −3.518 −2.654
1.0 0 0.6136 0 0 0




S2,4,2 =




0 1.0 0 0 0 0

0 −11.65 1.517 0.01172 1.53 −1.154
0 0 0 1.0 0 0

0 26.79 −26.08 −0.09978 −3.518 2.654

1.0 0 0.6136 0 0 0




S1,5,2 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.003582 1.531 1.155

0 0 0 1.0 0 0

0 26.89 −26.13 −0.08108 −3.532 −2.665
1.0 0 0.6143 0 0 0




S2,5,2 =




0 1.0 0 0 0 0

0 −11.66 1.525 0.003582 1.531 −1.155
0 0 0 1.0 0 0

0 26.89 −26.13 −0.08108 −3.532 2.665

1.0 0 0.6143 0 0 0




(19)

Weighting functions of the TP model are given in Fig. 2.

4. CONTROLLER DESIGN

4.1 Linear Matrix Inequalities

Recently a class of numerical optimization problems called
linear matrix inequality (LMI) problems has received sig-
nificant attention. These optimization problems can be
solved in polynomial time and hence are tractable, at least
in a theoretical sense. Interior-point methods, developed
for these problems, have been found to be extremely effi-
cient in practice. For systems and control, the importance
of LMI optimization stems from the fact that a wide vari-
ety of system and control problems can be recast as LMI
problems. Except for a few special cases these problems
do not have analytical solutions. However, the main point
is that through the LMI framework they can be efficiently
solved numerically in all cases. Therefore recasting a con-

trol problem as an LMI problem is equivalent to finding a
solution to the original problem.

Generally, a linear matrix inequality (LMI) has the form

F (x) = F0 +

m∑

i=1

xiFi > 0, (20)

where x ∈ Rm is the variable and the symmetric matrices
Fi = FT

i are given. The inequality symbol in (20) means
that F (x) is positive definite

4.2 Control objective

In Kolonić et al. (2006) the control objective was to
find stabilizing controller under quadratic stability (QS)
with prescribed decay rate with minimal overshoot and
constrained control signal. In order to obtain stabilizing
controller Lyapunov stability approach is used, with Lya-
punov function candidate given by:

V (x) = xTPx > 0. (21)

The speed of response is related to decay rate α, that is,
the largest Lyapunov exponent. Therefore, the condition
for desired decay rate can be written as

V̇ (x) ≤ −2αV (x). (22)

The equilibrium of the continuous system in polytopic
form (3) is globally asymptotically stable if there exists
a common positive definite matrix P such that

AT
i P + PAi + 2αP < 0; i ∈ (1, R). (23)

Next, let us consider the stability of the closed-loop control
system of TP model of single pendulum gantry. It is
globally asymptotically stable if there exists a common
positive definite matrix P such that

GT
iiP + PGii + 2αP < 0,

(
Gij +Gji

2

)T

P + P

(
Gij +Gji

2

)
+ 2αP ≤ 0, i < j,

(24)
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Fig. 2. Weighting functions of the TP model

where

Gij = Ai +BiFj , (25)

denotes closed loop state matrix.

Largest possible decay rate can be found by solving gen-
eralized eigenvalue minimization problem (GEVP):

maximize α

subject to

X > 0

−XAT
i −AiX +MT

i B
T
i +BiMi + 2αX > 0

−XAT
i −AiX −XAT

j −AjX +MT
j B

T
i

+BiMj +MT
i B

T
j +BjMi − 4αX ≥ 0

(26)

where X = P−1 and Mi = FiX.

In order to satisfy the constraints on control input and
output constraints, the following LMIs are added to the
(26).

Constraint on the control value:

Assume that initial condition x(0) is unknown, but its
upper bound ‖x(0)‖ ≤ φ is known, which can be recast
as following LMI

φ2I ≤ X, (27)

the constraint ‖u‖2 ≤ µ is enforced ∀t ≥ 0 if the following
LMI holds

(
X MT

i

Mi µ
2I

)
≥ 0. (28)

Constraint on the output:

Assume that condition (27) is satisfied, the constraint
‖y(t)‖2 ≤ λ is enforced, ∀t ≥ 0, if the following LMI holds(

X XCT
i

CiX λ2I

)
≥ 0. (29)

LMI conditions (26) - (29) guarantee stability, constrained
control signal and constrained output, however since fric-
tion effects were neglected it resulted in steady state error.
In order to minimize steady state error, H∞ norm was
minimized since it is related to the capacity of the closed-
loop system to reject energy bounded disturbance.

If there exist Lyapunov function (21) such that

V̇ (x) + yT y − γ2wTw ≤ 0, (30)

closed loop system has guaranteed H∞ disturbance atten-
uation less than γ,

‖y(t)‖2 ≤ γ‖w(t)‖2, (31)

besides being quadratically stable. Condition (30) can be
rewritten as

R∑

i=1

w2
i (p)Tii +

R−1∑

i=1

R∑

j=i+1

wi(p)wj(p)(Tij + Tji) < 0, (32)

where

Tij =



(
AiX +XAT

i +BiMj+
+MT

j B
T
i + EiE

T
i

)
?

CiX + FiE
T
i +DiMj FiF

T
i − γ2I


 , (33)
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which is in literature known as LMI representation of
bounded real lemma (Boyd et al., 1994), (Fridman and
Shaked, 2001).

Since γ is related to the level of disturbance attenuation
it is of great interest to compute controller which ensures
minimum value of γ.

minimize γ

subject to (33) (34)

Classical LMI conditions test the negative definiteness
of (33), by imposing that the coefficients Tii < 0 and
Tij + Tji < 0, which is obviously only sufficient condition.
Instead we use condition with proved convergence towards
(33) in following theorem

Theorem 1 : The TP model in (3) is quadratically stabi-
lizable by means of all linear parameter-dependent state

feedback control gain K(p) =
∑R

i=1 wi(p)Ki with an H∞
guaranteed cost γ > 0 if and only if there exist a symmetric
positive definite matrix X ∈ Rn×n, matrices Mi ∈ Rm×n,
i = 1, ..., N , matrices Xk ∈ R2n+p+q×n+q, k ∈ N (g), a
degree g ≥ 1, g ∈ N, and a sufficiently large d ∈ N such
that

∑

k′∈N (d)
k�k′


 ∑

i∈{1,...,N}ki>k′
i

d!

π(k′)

(
Xk−k′−eiBi + BTi XT

k−k′−ei
)

+

+
∑

i,j∈{1,...,N}
k−k′−ei−ej�0

d!

π(k′)
· (g − 1)!

π(k − k′ − ei − ej)

×



BiMj +MT

j B
T
i X 0 MT

i D
T
j

? 0 0 0
? ? I 0
? ? ? −γ2I





 < 0,

∀k ∈ N (g + d+ 1),
(35)

with

Bi =

[
AT

i −I 0 CT
i

ET
i 0 −I FT

i

]
, (36)

where N (g) is set of N-tuples obtained as all possible
combinations of nonnegative integers ki, i ∈ [1, N ], such

that
∑N

i=1 ki = g., for N-tuples k, k′, comparation,
summation and substraction are defined componentwise,
N-tuple ei denotes N-tuple with all components equal 0,
except i-th component which equals 1, and where π(k) is
defined as π(k) = (k1!)(k2!) . . . (kN !).

Minimising γ subject to LMI constraints proposed in The-
orem 1., have the asymptotic convergence to the mini-
mum H∞ guaranteed cost under quadratic stabilizability,
for more details and proof of Theorem 1 see Montagner
et al. (2009), http://www.dt.fee.unicamp.br/~ricfow/
robust.htm.

In the affirmative case, local feedback gains are given by
Ki = MiX

−1, i = 1, ..., N .

In order to ensure constrained control input (27) and (28)
are added to (35).

By using Yalmip 2 and Sedumi 3 1.3, the following feasible
solution and feedback gains are obtained:

K1,1,1 =
(

64.55 22.34 −5.605 8.128
)T

K2,1,1 =
(

64.55 22.34 −5.605 8.128
)T

K1,2,1 =
(

64.52 22.32 −5.616 8.118
)T

K2,2,1 =
(

64.52 22.32 −5.616 8.118
)T

K1,3,1 =
(

65.29 22.52 −5.287 8.213
)T

K2,3,1 =
(

65.29 22.52 −5.287 8.213
)T

K1,4,1 =
(

65.34 22.51 −5.267 8.212
)T

K2,4,1 =
(

65.34 22.51 −5.267 8.212
)T

K1,5,1 =
(

66.71 22.86 −4.684 8.374
)T

K2,5,1 =
(

66.71 22.86 −4.684 8.374
)T

K1,1,2 =
(

64.52 22.32 −5.616 8.118
)T

K2,1,2 =
(

64.52 22.32 −5.616 8.118
)T

K1,2,2 =
(

64.55 22.34 −5.605 8.128
)T

K2,2,2 =
(

64.55 22.34 −5.605 8.128
)T

K1,3,2 =
(

65.27 22.5 −5.296 8.206
)T

K2,3,2 =
(

65.27 22.5 −5.296 8.206
)T

K1,4,2 =
(

65.38 22.54 −5.251 8.225
)T

K2,4,2 =
(

65.38 22.54 −5.251 8.225
)T

K1,5,2 =
(

66.7 22.86 −4.687 8.371
)T

K2,5,2 =
(

66.7 22.86 −4.687 8.371
)T

(37)

4.3 Results

Simulation and experimental results are shown on Fig
3. During simulation and experimental tests proposed
H∞ approach is compared to original TP model based
approach (QS) described in Kolonić et al. (2006). It can
be seen that proposed approach has successfully minimized
steady state error of chart position from 14.55 mm to
2.4 mm in simulation, and from 7mm to 0.4 mm in
experimental results. However, slower decay rate as well
as oscillatory angle response is obtained due to increased
control action needed to overcome static friction force.

5. CONCLUSION

TP transform (HOSVD) creates polytopic model suitable
for PDC controller synthesis via LMIs. Presented results
for gantry crane are obtained by using exact TP trans-
form. Simulation and experimental results verify that H∞
controller has successfully minimized steady state error
due to friction effect, however it resulted in oscillatory
angle response and slower decay rate. In order to minimize
oscillations H∞ controller could be extended with robust
pole placement inside LMI regions.
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(a) Simulation results
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(b) Experimental results

Fig. 3. Simulation and experimental results after step reference position, where y is pendulum tip position, xc is cart
position, α is pendulum angle and Um is control input, respectively
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