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Abstract: The article deals with the control of the semi-batch reactor that is used in chromium sludge 
processing. To simulate the real process a mathematical model including reaction kinetics was used. The 
parameters of the achieved model were obtained and verified by experiments. The control of the semi-
batch reactor is difficult by common control methods because of the strongly exothermic chemical 
reaction. A model predictive control using artificial neural network is applied to the temperature control 
problem. The system control is generally complicated because of its nonlinearities. 

 

1. INTRODUCTION 

Although the leather industry is environmentally important as 
a user of by-products of the meat industry, it is perceived as a 
consumer of resources and producer of pollutants. 

The most serious problem, which is now of a great 
importance, is chrome-tanned solid waste. One of the 
numerous possible solutions of the problem of chrome-
tanned waste is its enzymatic dechromation. A chromium 
filter cake containing not only the alkali, but also a non-
hydrolyzed protein is obtained. This fact can be used for the 
production of regenerated tanning chromium salts 
(Kolomazník at al. 2007). 

 Chromium filter cake (chromium sludge) processing can be 
done in a semi-batch reactor. Batch reactors provide flexible 
means of producing high value-added products in specialty 
chemical, biotechnical, and pharmaceutical industries. To 
realize the production objectives, these batch reactors have to 
be operated optimally in a precise fashion. However, due to 
the following characteristics: 1. intrinsic nonlinearity; 2. lack 
of steady-state operating conditions; 3. uncertainties in 
reaction dynamics, or modeling error; 4. unknown 
disturbances; 5. constraints on process variables; 6. and 
limited on-line measurement information, the optimization 
and control of batch reactors present some of the most 
interesting and challenging problems for both academia and 
industry in the process control arena (Hua at al. 2004). 

Due to the complexity of the reaction mixture and the 
difficulties to perform on-line composition measurements, 
control of batch and fed-batch reactors is essentially a 

problem of temperature control. The temperature profile in 
batch reactors usually follows three-stages (Bouhenchir at al. 
2006): (i) heating of the reaction mixture until the desired 
reaction temperature, (ii) maintenance of the system at this 
temperature and (iii) cooling stage in order to minimize the 
formation of by-products. Any controller used to control the 
reactor must be able to take into account these different 
stages. 

2. PROCESS MODEL 

In this paper, a fedbatch reactor model is used to study model 
predictive control method application. The model input data 
comes from a real process - the chromium waste recycling 
process (Macků 2003), (Janáčová 2006). Let us consider 
single input – single output (SISO) system of chemical 
exothermic semi-batch reactor. The mathematical model of 
this system can be written by equations (1)-(4). 

 

( )
IF

t
tm

=
d

d
   (1)  

( )
( )

( ) ( )taeA
tm

F
t
ta tTR

E
I ⋅⋅−= ⋅

−

d
d

 (2) 

( )
( )

( ) ( )
−

⋅Δ⋅⋅
+

⋅
⋅⋅

=
⋅

−

c
taHeA

ctm
TcF

t
tT r

tTR
E

III

d
d

( )
( )

( )
( ) ctm

tTSK
ctm

tTSK C

⋅
⋅⋅

+
⋅

⋅⋅
−   (3) 

     

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 088.pdf

378



 
 

 

( ) ( )
−

⋅
⋅⋅

+
⋅

=
CCC

CICC

cm
tTSK

m
TF

t
tT

d
d

 

 
( ) ( )

C

CC

CC

C

m
tTF

cm
tTSK ⋅

−
⋅
⋅⋅

−    (4) 

 

where m is the total weight of reaction components in the 
reactor, a is the mass concentration of the reaction 
component in the reactor, c = 4500 J.kg.K-1 is the specific 
heat capacity of the reactor content, T is the temperature of 
the reactor content. FI, TI = 293.15 K and cI = 4400 J.kg.K-1 
is the reaction component input mass flow rate, temperature 
and specific heat capacity. FC = 1 kg.s-1, TCI = 288.15 K, TC, 
cC = 4118 J.kg.K-1 and mC = 220 kg is the cooling water mass 
flow rate, input temperature, output temperature, specific heat 
capacity and weight of the cooling water in the cooling 
system of the reactor, respectively. Other constants: 
A = 219.588 s-1, E = 29967.509 J.mol-1, R = 8.314 J.mol-1.K-1, 
ΔHr = 1392350 J.kg-1, K = 200 kg.s-3.K-1, S = 7.36 m2. 

3. MODEL PREDICTIVE CONTROL 

The task was to control the in-reactor temperature T by 
reaction component dosing FI. The desired value of 
temperature T was 370K and the maximum value shouldn’t 
exceed 373K. The actuating variable FI was from the interval 
<0,3> kg.s-1. 

The basic idea of model predictive control (MPC) is to use a 
model to predict the future output trajectory of a process and 
compute a series of controller actions to minimize the 
difference between the predicted trajectory and a user-
specified one, subject to constraints (Garcia at al. 1989), 
(Camacho 2004), Fig. 1. 
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Fig. 1. The basic scheme of model predictive control. 

Generally we can say that MPC uses a predictor network 
(ANN) as the plant model in order to get its output 
predictions. The controller then calculates the control input 
that will optimize the performance criterion over a specified 
future time horizon (Zhang 2008). Typical form of the 
performance criterion J is as follows: 
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where N1, N2 and Nu define horizons over which the tracking 
error and the control increments are evaluated. The ut 
variable is the tentative control signal, yr is the desired 
response and  is the predictor response. The λ and ρ 
parameters determine the contribution that the particular sum 
has on the performance index. 

ŷ

The selection of predictor is a key question in the model 
predictive control (Mazinan 2008). Because the controlled 
system is nonlinear, an artificial neural network (ANN) was 
selected (Volosencu 2009). After many simulations and tests 
the multilayered feed-forward neural network with three 
layers was chosen as the best solution from the wide group of 
artificial neural networks. From the figure 2 can be seen that 
as a transfer function the hyperbolic tangent was used in the 
both hidden layers, while in the output layer the linear 
function was applied. The ANN predictor used five last 
values of the system output and the controlled signal as an 
input. The ANN based predictor was trained offline using 
offline prepared identification data. 

The minimization of the performance function is in the linear 
MPC typically provided by quadratic programming (Tondel 
at al. 2003), (Kouvaritakis at al. 2002). Nevertheless, because 
of the nonlinearity of the predictor and the usage of 
constraints it was necessary to apply a numerical 
optimization method. Therefore, the Levenberg-Marquart 
method, which is implemented in the Matlab Optimization 
Toolbox (Venkataraman 2009), was used in this paper. 

 

 

Fig. 2. The based on artificial neural network. 
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Fig. 3. The in-reactor temperature development – MPC1. 
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Fig. 4. The temperature in the cooling system – MPC1. 
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Fig. 5. The in-reactor chromium sludge concentration 
development – MPC1. 
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Fig. 6 The mass of reaction mixture – MPC1. 

In the figures 3, 4, 5 and 6 there are presented results of 
selected simulation of control using MPC controller with the 
criterion function (6). The presented simulation used the 
following settings of the controller: λ =1000, ρ =100000, 
N1=1, N2=8, Nu=8. However, this “standard” approach does 
not provide satisfactory performance in case of this semi-
batch plant. The time of the batch must be as short as possible 
because of the economical reasons. But it is impossible to 
obtain fast batch without overshoot of temperature by any 
combination of controller parameters. The increase of ρ 
parameter can reduce the temperature overshoot but in the 
cost of long batch time. 

Therefore, the third part to the criterion function (5) was 
added in order to reduce the speed of dosing (control signal 
u). The γ parameter determines the influence of nominal 
values of future control signal on the cost function (6). 
Results obtained using this cost function is in the following 
text denoted as MPC2. The settings of the controller were: 
λ=1000, ρ=10000, γ =10000, N1=1, N2=8, Nu=8. As can be 
seen from figures 7, 8, 9 and 10, the controller has permanent 
control error. In order to show this negative behaviour more 
clearly, it is assumed in the MPC2 that there is unlimited 
amount of the chromium sludge (batch input). 
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It can be deduced from MPC2 results that the size of the 
control signal had to be penalized in the beginning of the 
batch only. Thus, the criterion function (6) was modified into 
the form defined by equations (7) and (8). Then, the γ 
parameter was during the control gradually decreased up to 
zero in order to avoid the permanent control error. In other 
words, the third sum in the beginning of the control has the 
maximum value, and after initial phase it equals to zero. The 
γc parameter determines the speed of the decrement in γ. 
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Fig.7 The in-reactor temperature development – MPC2. 
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Fig.8 The temperature in the cooling system – MPC2. 
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Fig.9 The in-reactor chromium sludge concentration 
development – MPC2. 
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Fig.10 The mass of reaction mixture – MPC2. 
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Fig.11 The in-reactor temperature development – MPC3. 
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Fig.12 The temperature in the cooling system – MPC3. 
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Fig.13 The in-reactor chromium sludge concentration 
development – MPC3. 

     

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 088.pdf

381



 
 

     

 

REFERENCES 

0 0.5 1 1.5 2 2.5 3

x 10
4

1800

1900

2000

2100

2200

2300

2400

2500

time [s]

m
 [

kg
]

 

Able, B.C. (1956). Nucleic acid content of micro-scope. 
Nature 135, 7-9. 

Able, B.C., R.A. Tagg and M. Rush (1954). Enzyme-
catalyzed cellular transanimations. In: Advances in 
Enzymology (A.F. Round, Ed.). 3rd ed.. Vol. 2. pp. 125-
247. Academic Press. New York. 

Keohane, R. (1958). Power and Interdependence: World 
Politics in Transitions. Little, Brown & Co.. Boston. 

Kolomazník, K., Adámek, M., Uhlířová, M. (2007). Potential 
Danger of Chromium Tanned Wastes, In Proceedings of 
the 5th IASME/WSEAS International Conference on 
Heat Transfer, Thermal Engineering and Environment, 
IASME/WSEAS, p. 137-141. 

Hua, X., Rohani, S., Jutan, A. (2004). Cascade closed-loop 
optimization and control of batch reactors, Chemical 
Engineering Science, Vol. 59, p. 5695 – 5708. 

Fig.14 The mass of reaction mixture – MPC3. 

 

[

[

∑

∑

∑

=

=

=

+

−+−−++

++−+=

u

u

N

j
t

N

j
tt

N

Nj
r

jkuk

jkujku

jkyjkyJ

1

1

2

2

)()(

)2()1(

)(ˆ)(
2

1

γ

ρ

λ ]

]      (7) 

Bouhenchir, H., Cabassud, M., Le Lann, M.V. (2006). 
Predictive functional control for the temperature control 
of a chemical batch reactor. Computers and Chemical 
Engineering. Issue 30, p. 1141-1154. 

Macků, L. (2003). Control design for the preparation of 
regenerate for tanning, Ph.D. Thesis, UTB in Zlin. 

Janacova, D., Kolomaznik, K., Mokrejs, P., Vasek, V. 
(2006). Optimization of enzymatic hydrolysis of leather 
waste, In Proceedings of the 6th WSEAS International 
Conference on Applied Informatics and 
Communications, WSEAS, p. 345-348. 

Garcia, C.E., Prett, D.M., Morari, M., Model predictive 
control: theory and practice – a survey, Automatica, Vol. 
25, No. 3, pp. 335-348. 

 
ckk γγγ −−= )1()(               (8) 

Camacho, E. F., Bordons, C. (2004). Model Predictive 
Control in the Process Industry. Springer - Verlag.  

Zhang J., Wang, W. (2008). Synthesis of explicit model 
predictive control system with feasible region shrinking, 
In 8th WSEAS Conf. on Robotics, Control and 
Manufacturing Technology, WSEAS. 

The controller with cost function defined by equations (7) 
and (8) was tested in simulation MPC3 with the following 
settings: λ =1000, ρ =100000, γ=10000, γc =200, N1=1, N2=8, 
Nu=8. As can be seen from the figures 11 – 14, the MPC3 
results were: the upper-most in-reactor temperature T reached 
370.78 K, the maximum chromium sludge concentration a 
was 0.0461 and the total batch time made 25499 seconds. 

Mazinan, A. H., Sadati, N. (2008). Multiple Modeling and 
Fuzzy Predictive Control of a Tubular Heat Exchanger 
System, WSEAS TRANSACTIONS on SYSTEMS and 
CONTROL, Vol. 3, No. 4, pp. 249 – 258. 

The maximum and minimum actuating variable values were 
0.9375 kg.s-1 or 0 kg.s-1 respectively. The steady state 
actuating variable value made approximately 0.031 kg.s. 

Volosencu, C. (2009). Identification of Non-Linear Systems, 
Based on Neural Networks, with Applications at Fuzzy 
Systems, In Proceedings of the 10th WSEAS 
International Conference on Automation & Information, 
WSEAS. 4. CONCLUSION 

Tondel, P., Johansen, T. A., Bemporad, A. (2003). An 
algorithm for multi-parametric quadratic programming 
and explicit MPC solutions, Automatica, Vol. 39, No. 3, 
pp. 489 – 497. 

The best control performance was obtained by MPC3, but 
simulation of this method is quite hardware demanding 
today. The simulation using CPU 2500 MHz computer took 
almost 2 hours. As can be seen, the MPC can solve even such 
difficult task as nonlinear system, chemical reactor is. 

Kouvaritakis, B., Cannon, M., Rossiter, J. A. (2002). Who 
needs QP for linear MPC anyway?, Automatica, Vol. 38, 
No. 5, pp. 879 – 884. 

ACKNOWLEDGMENTS Venkataraman, P. (2009). Applied Optimization with 
MATLAB Programming. John Wiley & Sons, Inc. The work has been supported by the Ministry of Education, 

Youth and Sports of the Czech Republic under grant MSM 
7088352102. This support is gratefully acknowledged. 

 

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Po-We-8, 088.pdf

382


