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Abstract: The subject of this paper is to design robust decentralized PID controllers for the 3Dcrane to 
stabilize motion of the cart along axes-x, axes-y using the Small Gain Theorem, and Parameter Dependent 
Lyapunov Functional (PDLF) in time domain. The obtained results were evaluated and verified in the 
Matlab simulink and on the real model of the 3DCrane.  
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1. INTRODUCTION 

The industrial crane model 3DCrane is one of the real 
processes built for control education and research at 
Department of Information Engineering and Process Control. 
The 3DCrane is a nonlinear electromechanical MIMO system 
having a complex dynamic behavior and creating challenging 
control problems as nonlinear, interactions between 
subsystems corresponding to motion of cart along the axes-x 
and axes-y, length of the payload lift-line dynamic changed 
… The technical equipments allow us to realize control crane 
by classical and advanced control method (INTECO Ltd.: 
3DCrane User’s manual). 

The main aim of paper is to use knowledge of multivariable 
(Multi Input and Multi Output) system and stabilization of 
decentralized control systems (Zhining et al. 1997), 
knowledge about robust control of linear systems in the 
frequency domain (Veselý et al. 2006) and in the time 
domain to design robust PID/PD decentralized controllers 
stabilizing the cart motion process of 3DCrane along the both 
axis x/y with the different length of the payload lift-line 
(robust stability). Furthermore, the resulting feedback control 
system with designed controllers must satisfy robust 
performance conditions for tracking the desired position of 
the cart. 

2. OVERVIEW OF THE 3DCRANE SYSTEM WITH 
ARTIFICAL INTERACTION 

The 3DCrane system is a nonlinear electromechanical system 
having a complex dynamic behavior and creating challenging 
control problem. It is controlled from PC. Therefore it is 
delivered with hardware and software which can be easily 
mounted and installed in a laboratory. You obtain the 
mechanical unit together with the power supply and interface 
to the PC and the dedicated digital board configured in the 
Xilinx technology. The software operates under MS 
Windows using MATLAB and RTW toolbox package. 

The 3DCrane setup (see Fig.1) consists of a payload hanging 
on a pendulum-like lift-line wound by a motor mounted on a 
cart. The payload is lifted and lowered in the z direction. 
Both the rail and the cart are capable of horizontal motion in 
the x direction. The cart is capable of horizontal motion along 
the rail in the y direction. Therefore the payload attached to 
the end of the lift-line can move freely in three dimensions.  

The 3DCrane is driven by three DC motors. There are five 
identical measuring encoders measuring five state variables: 
the cart coordinates on the horizontal plane, the lift-line 
length, and two deviation angles of the payload. 

 

Fig.1. The 3DCrane setup 

In the original model, there is no interaction between 
subsystems, and thus design robust controller for the motion 
of this 3DCrane system corresponds to design two 
independent robust controllers for two subsystems. The lift-
line R is considered as an uncertainty. 

To research the affect of the interaction between subsystems 
in MIMO system, we consider artificial interactions between 
the output signals  X s ,  resp. position of card along  Y s
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axes x and axes y. The resulting output signals  X s ,  Y s  

with interaction corresponding to subsystems are: 
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The main aim of paper is to design robust PID decentralized 
controllers for the 3DCrane system with interaction (1) for 
tracking a desired position of the cart on the both case of 
movement of crane along axes-x and axes-y.  

Procedure to design robust PID decentralized controllers can 
be summarized as five sequential steps: 

1. Choose a suitable control configuration, and then 
identify motion process of the 3DCrane along axes-x 
and axes-y at three operating points with lift-line z 
equals 0[m], 0.25[m], 0.5[m] resp. 1 2, ,P P P  3

2. Check the selection of the control configuration for this 
system (Neitherlinski index (NI)).  

3. In the case of succeeding selection of the control 
configuration, create unstructured model uncertainty for 
motion process. Otherwise, return the first step. 

4. Design a robust decentralized PID controller for this 
process using Small Gain Theorem algorithm and 
PDLF. 

5. Verify obtained result by simulating in Matlab and on 
the real model. 

3. MAIN RESULT 

3.1 Identification of positioning process 

Using ARX or ARMAX identification method, result of 
process identification is described by the following transfer 
function matrices at three operating points.  

Transfer function matrix of system at P1 is: 

 
2

1

2

-0.04723s+3.363   0.25

s +13.64s + 0.4507 8s + 1
  0.3 -0.01698s+3.032

07569 7s + 1 s +10.52s + 0.

G s
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      (2) 

Transfer function matrix of system at P2 is:  
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2
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    (3) 

Transfer function matrix of system at P3 is: 

 
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2
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s +9.741s + 0.3612 8s + 1
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      (4) 

3.2 Check the selection of control configuration 

In this section, we test the given selection of control 
configuration with nominal model  by using 

Neitherlinski index (NI.). 

 0G s

The Neitherlinski index (NI) is calculated by equation  

01
det

2

1
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
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iik

K
NI                                                         (5) 

where K is stead-state gain matrix of system. 

The positive value of Neitherlinski index indicates that, 
system is structurally stable. 

The given selection of control configuration is correct. 

3.3 Design of robust decentralized PID controller using 
method of equivalent subsystems 

Consider the MIMO system described by a transfer matrix 

function  and a decentralized 

controller . For robust decentralized control 

procedure we have used the originally developed method, 
Method of Equivalent subsystems. For the ESM local 
controllers are designed according to the independent design 
approach using any frequency –domain design procedure. 
Resulting local controllers guarantee fulfillment of 
performance requirements imposed on the full system. 
Robust stability and performance is guaranteed using Small 
Gain Theorem. The design procedure of ESM approach the 
reader can consult at (Kozáková et al. 2009) and (Osuský et 
al. 2011). 

( ) mxmG s R

( ) mxmRR s

For the following parameters the robust controller has been 
designed: demanded phase margin of equivalent subsystems 
is 70 degree (overshoot is about 10 percent), settle time is 
about 12sec. Using design procedure given at (Kozáková et 
al. 2009) and (Osuský et al. 2011) for inverse additive type 
uncertainty 

)())()(()( 1 sGssGlIsG ooia
                               (6) 

 and robust stability condition  

  ,1)(MM                                                               (7)                 

where                                                    

                                 (8) 
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

We have obtained the following robust controller iR  :  
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Due to (7) the slightly modified robust stability conditions is 
given at Fig.2 

 

Fig.2.Verifying robust stability condition for input 
multiplicative model of uncertainty 

From Fig.2, we can state that, the closed-loop feedback 
system with the PI controller iR  is robust stable. And now we 

verify the obtained result in Matlab simulation (see Fig.3) 
and on the real model (see Fig.4)  

 

Fig.3. Position output signals with PI controller at third 
operating point in Matlab 

 

Fig.4 Position output signals with PI controller at third 
operating point on real model 

From results of simulation in Matlab and on the real model 
we can show that, feedback system with designed PI 
controllers is robust stable with a demanded performance. 

3.4 Design of robust decentralized PID controller using 
PDLF 

Each of the transfer function matrices (2), (3) and (4) can be 
transformed to linear time invariant continuous 
system  , , , 0 ; 1,2,3i iA B C D i  , which are considered three 

vertices of the polytopic system. Our task is to find remain 
vertex (the fourth vertex) of this polytopic system. 

We shall consider the following affine linear time invariant 
continuous time uncertain system 

   1 1 2 2 1 1 2 2x A A A x B B B

y C x
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Polytopic model is defined as follow:  
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Vertices of polytopic system are created by the combination 
of extreme values of j . 
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We suppose that, the extreme values 

of 1j j    , 1,2j  . Polytopic system will be obtained 

if for ! 24N   combinations of extreme value j , by solving 

equation system ,  

we have matrices 

1 1 2 2A A  

1 2, ,
iA A  1...( 1) 3i p  

A A A 

4A

 for which the maximal 

eigenvalues of respective matrix  will be minimal. 

The best combination of 1 2,  for calculation of matrices 

 is as follow: )...(,,, 414321 BBAAAA
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Consider the uncertain system (15), where  
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Consider PID control law as follow:   

d

dy
u Fy F FCx F C x

dt
    d d                        (14) 

Closed-loop feedback system with PID controller (19) is:  

   d cM x A x                                                          (15) 

 where 
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Consider cost function as follow  


0

T T T J x Qx u Ru x Sx dt


                                          (16) 

The closed-loop feedback system (15) with the PID controller 
(14) is robust stable and guarantees the cost function (16) if 

and only if there exist matrices  
4

1

, 0i i i
i

P P P


  ;

1... 4i N  , , , and H G F dF  then the following 

inequality is satisfied (Rosinová et al. 2007)  

  0

TT T T T T
ci ci i di ci

T T T
i di ci di di
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   (17)                  

For given cost function with 1*R I ,  by using 
BMI to solve (17), the PID controller is obtained as follow: 

0.1*Q S I 

1.4065 0 0.1508 0
,

0 1.1903 0 0.1218

0.1859 0

0 0.1579d

F

F

 
  
 
 

  
 

                (18) 

And now we verify the obtained result in Matlab simulation 
(see Fig.5) and on the real model (see Fig.6)  

 

Fig.5. Position output signals with PID controller at three 
operating points in Matlab 

 

Fig.6. Position output signals with PID controller at third 
operating point on real model 

 

From simulating results on real model, we can conclude that, 
the cart of the crane tracks a desired position. 
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4. CONCLUSION 

In this paper, we have researched and applied successfully 
the knowledge of multivariable system, stabilization of 
decentralized control systems and the knowledge of robust 
control theory in the frequency domain and also in the time 
domain to control the 3DCrane system. 

There was a sequential procedure to design robust 
decentralized controllers for the 3DCrane system. We have 
identified process of the cart motion along axis x and y. The 
identification was executed at three operating points 
corresponding to following length of the payload lift-line: 0, 
0.25 and 0.5 [m]. From resulting identified three transfer 
function matrices, we have designed robust decentralized PID 
controller to stabilize the cart motion and track the desired 
position. The resulting PID controllers are verified in the 
Matlab simulink and on the real model. The cart was at the 
desired position. 
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