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Linearized continuous-time model:!
(at altitude of 5000m and a speed of 128.2 m/sec)!
!
!
!
!
!
!

•  Input: elevator angle!
•  States: x1: angle of attack, x2: pitch angle, x3: pitch rate, x4: altitude!
•  Outputs: pitch angle and altitude!
•  Constraints: elevator angle ±0.262rad (±15º), elevator rate ±0.524rad (±60º)!

! ! !     pitch angle ±0.349 (±30º)!
!

Open-loop response is unstable (open-loop poles: 0, 0, -1.5594±2.2900i )!

Example: Cessna Citation Aircraft!

horizon!

V!

Pitch angle!

Angle of attack!

ẋ =





−1.2822 0 0.98 0
0 0 1 0

−5.4293 0 −1.8366 0
−128.2 128.2 0 0



 x +





−0.3
0
−17
0



 u

y =

�
0 1 0 0
0 0 0 1

�
x

[J. Maciejowski, Predictive Control with constraints, 2002]!
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LQR and Linear MPC with quadratic cost!
•  Quadratic performance measure!
•  Linear system dynamics !

!
•  Linear constraints on inputs and states! ! !!

!
!
!
!
!

!
!
!
!
!

!

MPC problem can be translated into a quadratic program (QP)!

MPC:!

x+ = Ax + Bu

y = Cx +Du

 LQR:!

Q = QT � 0, R = RT � 0

J∞(x) = min
x,u

∞�

i=0

xTi Qxi + u
T
i Rui

xi+1 = Axi + Bui

x0 = x

3!

J∗(x) = min
x,u

N−1�

i=0

xTi Qxi + u
T
i Rui

xi+1 = Axi + Bui

x0 = x

Cxi +Dui ≤ b
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Linear MPC with linear costs!
•  Linear performance measure (e.g. economically motivated cost, errors)!
•  Linear system dynamics !

•  Linear constraints on states and inputs!
!

Resulting MPC problem:!
!
!
!
!
!
!
Optimization problem can be translated into a linear program (LP) for p =1/!. 

J∗(x) = min
x,u

N−1�

i=0

�Qxi�p + �Rui�p

xi+1 = Axi + Bui

Cxi +Dui ≤ b
x0 = x

4!

x+ = Ax + Bu

y = Cx +Du
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Example: Cessna Citation Aircraft"
LQR with saturation!
Linear quadratic regulator with saturated inputs:!
!

At time t = 0 the plane is flying with a deviation of 
10m of the desired altitude, i.e. x (0)=[0; 0; 0; 10]!
!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10 

!  Closed-loop system is 
unstable!

!  Applying LQR control 
and saturating the 
controller can lead to 
instability…!

Input is saturated!

5!
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Example: Cessna Citation 500 aircraft"
MPC with bound constraints on inputs!
MPC controller with input constraints |ui |"0.262 

The MPC controller uses 
the knowledge that the 
elevator will saturate, but 
it does not consider the 
rate constraints.!
!
!  System does not 

converge to desired 
steady-state but to a 
limit cycle!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=10 

6!
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MPC controller with input constraints |ui |"0.262  
and rate constraints!
approximated by!

Example: Cessna Citation Aircraft"
MPC with all input constraints!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=10 

The MPC controller 
considers all constraints 
on the actuator!
!
!  Closed-loop system is 

stable!!
!  Efficient use of the 

control authority!

|u̇i | ≤ 0.349
|uk − uk ⌧ 1| ≤ 0.349Ts , u ⌧ 1 = uprev
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Example: Cessna Citation Aircraft"
Inclusion of state constraints!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=10 

Increase step:!
At time t = 0 the plane is 
flying with a deviation of 
100m of the desired 
altitude, !
i.e. x (0)=[0; 0; 0; 100]!
!
!  Pitch angle too large !
     during transient!
!

MPC controller with input constraints |ui |"0.262  
and rate constraints!
approximated by!

|u̇i | ≤ 0.349
|uk − uk ⌧ 1| ≤ 0.349Ts , u ⌧ 1 = uprev

Pitch angle #-0.9, i.e. -50° 

8!
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Example: Cessna Citation Aircraft"
Inclusion of state constraints!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=10 

Add state constraints for 
passenger comfort:!
!

|x2| "0.349 

MPC controller with input constraints |ui |"0.262  
and rate constraints!
approximated by!

|u̇i | ≤ 0.349
|uk − uk ⌧ 1| ≤ 0.349Ts , u ⌧ 1 = uprev

Constraint on pitch angle active!

9!
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Example: Cessna Citation Aircraft"
Shorter horizon causes loss of stability!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=4 

MPC controller with input constraints |ui |"0.262  
and rate constraints!
approximated by!

|u̇i | ≤ 0.349
|uk − uk ⌧ 1| ≤ 0.349Ts , u ⌧ 1 = uprev

Decrease in the prediction 
horizon causes loss of the 
stability properties  

This part of the workshop:!
How can constraint 

satisfaction and stability in 
MPC be guaranteed? !
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Outline!
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•  Motivating Example: Cessna Citation Aircraft!
!
•  Constraint satisfaction and stability in MPC!

–  Main idea !
–  Problem setup for the linear quadratic case!

!
•  How to prove constraint satisfaction and stability in MPC!

!
•  Implementation !

!
•  Theory extensions !
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What can go wrong with standard MPC approach?!
!

!  No feasibility guarantee, i.e. the MPC problem 
may not have a solution !

!  No stability guarantee, i.e. trajectories may not 
converge to the origin!

!

!
!
!
!
!
!
!
!
!

Loss of feasibility and stability guarantees!

Definition: Feasible set!
XN x
N

XN := {x | ∃[u0, . . . , uN−1] Cui +Dxi ≤ b, i = 1, . . . , N}

12!

min
x,u

N−1�

i=0

xTi Qxi + u
T
i Rui

xi+1 = Axi + Bui

x0 = x

Cxi +Dui ≤ b



!"#$%!#&'('$)#*$+(
+!,$*!#$*-

Example: Loss of feasibility !
!

Consider the double integrator:!
!
subject to the input constraints!
!
and the state constraints! ! ! !  .!
!
We choose ! ! ! !. !
!

Time step 1: x (0)=[-4 ; 4]  , u0
* (x)=-0.5   

Time step 2: x (1)=[  0 ; 3]  , u0
* (x)=-0.5 

Time step 3: x (2)=[  3 ; 2]   MPC problem !

! ! !    infeasible!
!
!
!

N = 3, Q =

�
1 0
0 1

�
, R = 10 Set of initial 

feasible states!
(feasible set)!
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x+ =

�
1 1
0 1

�
x +

�
0
1

�
u

−0.5 ≤ u ≤ 0.5
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Example: Loss of stability!
!

Consider the unstable system:!
!
subject to the input constraints!
!
and the state constraints!
!
We choose ! !  !
!
and investigate the stability properties for different horizons N and weights R  by 
solving the finite horizon MPC problem in a receding horizon fashion …!
!
!

Q =

�
1 0
0 1

�

14!

x+ =

�
2 1
0 0.5

�
x +

�
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Example: Loss of stability !

①   R=10, N=2 
②   R=2,    N=3 
③   R=1 ,   N=4 
 

*   Initial points leading to trajectories  !
     that converge to the origin!
" Intitial points that diverge!
 !

①   !

②   ! ③   !

Parameters have complex effect on closed-loop trajectory!

−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2

−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2

−10 −5 0 5 10
−10

−5

0

5

10

x1

x 2
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Main idea: !
Introduce terminal cost and constraints to explicitly ensure stability and 
feasibility:!
!
!
!
!
!
!
!
!
!
! How to choose P and Xf   ? 
!
!
!
!
!
!
!
!
!
!
!

Terminal cost!

Terminal constraint!

t!

Xf !

xN 
x0=x 

Feasibility and stability in MPC – Main Idea!

J∗(x) = min
x,u

N−1�

i=0

xTi Qxi + u
T
i Rui + x

T
NPxN

xi+1 = Axi + Bui

Cxi +Dui ≤ b
xN ∈ Xf
x0 = x

16!
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•  Problems originate from the use of a ‘short sight’ strategy!
!  Finite horizon causes deviation between the open-loop prediction and 

the closed-loop system:!

!
!
!
!
!

•  Ideally we would solve the MPC problem with an infinite horizon, but that is 
computationally intractable!

!

! Design finite horizon problem such that it approximates the infinite horizon !

!
!

!
!

Set of feasible 
initial states for 
open-loop 
prediction!

Set of initial 
states leading to 
feasible closed-
loop trajectories!

How to choose the terminal set and cost "
– Main Idea!

−5 0 5
−5

0

5

x1

x 2
−5 0 5
−5

0

5

x1

x 2

Open-loop 
predictions!

Closed-loop 
trajectories!

17!



!"#$%!#&'('$)#*$+(
+!,$*!#$*-

We can split the infinite horizon problem into two subproblems:!
!
!

!
!
!

•  Bound the tail of the infinite horizon cost from N to ! using the !
LQR control law u=KLQR x 

•  xN
T P xN  is the corresponding infinite horizon cost!

•  P  is the solution of the discrete-time algebraic Riccati equation!
!

Choice of N such that constraint satisfaction is guaranteed? !

How to choose the terminal cost!

①  Up to time k =N, where the 
constraints may be active!

②  For k >N, where there are no 
constraints active!

J∗(x) = min
x,u

N−1�

i=0

xTi Qxi + u
T
i Rui

xi+1 = Axi + Bui

Cxi +Dui ≤ b
x0 = x

+ min
x,u

∞�

i=N

xTi Qxi + u
T
i Rui

xi+1 = Axi + Bui ,

+   xN
T P xN   Unconstrained LQR !
! ! !starting from state xN 

18!
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Terminal constraint provides a sufficient condition for constraint satisfaction :!
!
!

!
!
•  All input and state constraints are satisfied for the closed-loop system using 

the LQR control law for!
•  Terminal set is often defined by linear or quadratic constraints!
!

!  The bound holds in the terminal set and is used as a terminal cost!
!  The terminal set defines the terminal constraint!
!
In the following: Show that this problem setup provides feasibility and stability!

x ∈ Xf

How to choose the terminal set!

t!

Xf !

xN 
x0=x 

Infinite horizon cost !
starting from xN 
!

J∗(x) = min
x,u

N−1�

i=0

xTi Qxi + u
T
i Rui + x

T
NPxN

xi+1 = Axi + Bui

Cxi +Dui ≤ b
xN ∈ Xf
x0 = x

19!
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Outline!

 20!

•  Motivating Example: Cessna Citation Aircraft!
!
•  Constraint satisfaction and stability in MPC!

–  Main idea !
–  Problem setup for the linear quadratic case!

!
•  How to prove constraint satisfaction and stability in MPC!

!
•  Implementation !

!
•  Theory extensions !
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Formalize goals: "
Definition of feasibility and stability!
Goal 1: Feasibility at all times!
!
!
!
!
Goal 2: Stability!
 !
!
!
!

Definition: Recursive feasibility!
The MPC problem is called recursively feasible, if for all feasible initial states 
feasibility is guaranteed at every state along the closed-loop trajectory. !

Definition: Lyapunov stability!

21!

$ 
% 

x(0) 

x(k + 1) = Ax(k) + Bκ(x(k)) =
fκ(x(k)) X � > 0
δ(�) > 0 x(0) ∈ X

�x(0)� ≤ δ(�)⇒ �x(k)� < � ∀k ∈ N .
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Invariant!
! Recursively!
     feasible!

!

!
!
!
!
The positively invariant set that contains every closed positively invariant set is 
called the maximal positively invariant set O! .!
!

Definition: Invariant set!

Employed concept for the analysis of feasibility: "
Invariant sets!

 22!

O∞

O x(k + 1) = fκ(x(k))

x(k) ∈ O ⇒ fκ(x(k)) ∈ O, ∀k ∈ N .

Infeasible after 
one step!

Infeasible after 
two steps!
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Theorem: (e.g. [Vidyasagar, 1993])!

Definition: Lyapunov function!

Analysis of Lyapunov stability!

 23!

1 For simplicity it is assumed that V(x) is continuous. This assumption can be relaxed by requiring an additional  !
  state dependent upper bound on V (x), see e.g. [Rawlings & Mayne, 2009] !

Lyapunov stability will be analyzed using Lyapunov’s direct method:!

X
X

X x(k + 1) = fκ(x(k))
V : X → R+1

X x ∈ X

V (x) > 0∀x �= 0, V (0) = 0,
V (x(k + 1))− V (x(k)) ≤ 0
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How to prove feasibility and stability of MPC!

 24!

Main steps:!
•  Prove recursive feasibility by showing the existence of a feasible control 

sequence at all time instants when starting from a feasible initial point!
!
!

•  Prove stability by showing that the optimal cost function is a Lyapunov 
function!
!
!

We will discuss two main cases in the following:!
–  Terminal constraint at zero: ! !xN  = 0 
–  Terminal constraint in some (convex) set: !xN  & Xf!

!
For simplicity, we use the more general notation:!

!
!
!

( In the quadratic case: ! ! ! ! !     )!

J  (x) = minx,u
∑N ⌧1
i=0 l(xi , ui) + Vf (xN)

stage cost! terminal cost!
l(xi , ui) = xTi Qxi + u

T
i Rui , Vf (xN) = x

T
NPxN

NOTE: Recursive feasibility does not imply stability of the closed-loop system!
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Stability of MPC – Zero terminal state constraint!

 25!

x  
0 = x

x  
1

x  
2

x  
3

x  
4

x  
5 = 0

Terminal constraint xN= 0 :!

•  Assume feasibility of x  and let [u0
* , u1

* , . . .,uN
*   - 1]  be the optimal 

control sequence computed at  x!

•  At x (k + 1) the control sequence [u1
* , u2

* , . . .,uN
*   - 1, 0]  is feasible 

(apply 0 control input to stay at the origin)!

!  Recursive feasibility!

•  The associated cost function value is given by:!

!

!

!

•  We obtain for the optimal solution! ! ! !!
!

!
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Stability of MPC – Zero terminal state constraint!

 26!

x  
0 = x

x  
2

x  
3

x  
4

x  
5 = 0

Terminal constraint xN= 0 :!

•  Assume feasibility of x  and let [u0
* , u1

* , . . .,uN
*   - 1]  be the optimal 

control sequence computed at  x!

•  At x + the control sequence [u1
* , u2

* , . . .,uN
*   - 1, 0]  is feasible 

(apply 0 control input to stay at the origin)!

!  Recursive feasibility!

•  The associated cost function value is given by:!

!

!

!

•  We obtain for the optimal solution! ! ! !!
!

!

x  
1 = x

+
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Stability of MPC – Zero terminal state constraint!

 27!

Terminal constraint xN= 0 :!

•  Assume feasibility of x  and let [u0
* , u1

* , . . .,uN
*   - 1]  be the optimal 

control sequence computed at  x!

•  At x + the control sequence [u1
* , u2

* , . . .,uN
*   - 1, 0]  is feasible 

(apply 0 control input to stay at the origin)!

!  Recursive feasibility!

•  The associated cost function value is given by:!

!

!

!

•  We obtain for the optimal solution! ! !
!!

!

!
! J *(x)        is a Lyapunov function ! (Lyapunov) Stability!

x  
0 = x

x  
2

x  
3

x  
4

x  
5 = 0

Subtract cost 
at stage 0!

Add cost for 
staying at 0!

x  
1 = x

+

J̃(x + ) = J  (x)− l(x, u  
0) + l(0, 0)

J  (x) ≤ J̃(x)
J  (x + )− J  (x) ≤ J̃(x + )− J  (x) ≤ −l(x, u  

0) ≤ 0
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−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x1

x 2

Problem: The terminal constraint xN= 0  reduces the feasible set!

Goal: "   Use convex set for Xf   that contains the origin in its interior!
!

Example:!

! !!

!

!

!

!

!

!

!

How can the proof be generalized to the constraint xN  ∊ Xf  ?!
!

Extension to more general terminal sets!

Feasible set for xN= 0  !
!

Feasible set for xN & Xf   !
!

Xf!

28!

Double Integrator: !

N = 5, Q =

�
1 0
0 1

�
, R = 10

x+ =

�
1 1
0 1

�
x +

�
0
1

�
u

�
−5
−5

�
≤ x ≤

�
5
5

�
−0.5 ≤ u ≤ 0.5
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Stability of MPC – Main result!
Consider that the following standard assumptions hold: !
!

①  The stage cost is a positive definite function, i.e. it is strictly positive and 
only zero at the origin!

!

②  The terminal set is invariant under the local control law 'f (x): 
 

 All state and input constraints are satisfied in Xf  :!
!
!

③  The terminal cost is a continuous Lyapunov function in the terminal set Xf  :!
!
!
!  The closed-loop system under the MPC control law is stable in the feasible !
     set XN . !

29!

Vf (x+)− Vf (x) ≤ −l(x,κf (x)) x ∈ Xf

x+ = Ax + Bκf (x) ∈ Xf x ∈ Xf

Xf ⊆ X, κf (x) ∈ U x ∈ Xf
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x  
1

x  
4

x  
0 = x

x  
5

x  
2

x  
3

•  Assume feasibility of x  and let [u0
* , u1

* , . . .,uN
*   - 1]  be the optimal 

control sequence computed at  x!

•  At x (k + 1) the control sequence [u1
* , u2

* , . . .,'f  (xN
*  )]   is feasible: 

xN is in Xf   ! 'f  (xN
*  ) is feasible and xN

+=AxN *       +B 'f  (xN
*  ) in Xf !

!

! Terminal constraint provides recursive feasibility!
!

•  The associated cost function value is given by:!

!

! ! ! Vf (x) is a Lyapunov function:  " 0 !!
!

•  We obtain for the optimal solution! ! ! !  :!

!
!

! J *(x)  is a Lyapunov function ! (Lyapunov) Stability !

Xf

Stability of MPC – Outline of the proof!

 30!
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Stability of MPC – Outline of the proof!

 31!

x  
0 = x

x  
4

x  
2

x  
3x  

5

•  Assume feasibility of x  and let [u0
* , u1

* , . . .,uN
*   - 1]  be the optimal 

control sequence computed at  x!

•  At x + the control sequence [u1
* , u2

* , . . .,'f  (xN
*  )]   is feasible:         

xN is in Xf   ! 'f  (xN
*  ) is feasible and xN

+=AxN *       +B 'f  (xN
*  ) in Xf !

!

! Terminal constraint provides recursive feasibility!
!

•  The associated cost function value is given by:!

!

! ! ! Vf (x) is a Lyapunov function:  " 0 !!
!

•  We obtain for the optimal solution! ! ! !  :!

!
!

! J *(x)  is a Lyapunov function ! (Lyapunov) Stability !

x  
1 = x

+

x̃6 Xf
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Stability of MPC – Outline of the proof!

 32!

•  Assume feasibility of x  and let [u0
* , u1

* , . . .,uN
*   - 1]  be the optimal 

control sequence computed at  x!

•  At x + the control sequence [u1
* , u2

* , . . .,'f  (xN
*  )]   is feasible:         

xN is in Xf   ! 'f  (xN
*  ) is feasible and xN

+=AxN *       +B 'f  (xN
*  ) in Xf !

!

! Terminal constraint provides recursive feasibility!
!

•  The associated cost function value is given by:!

!

!        Vf (x) is a Lyapunov function:  " 0 !!
!

•  We obtain for the optimal solution! !        :!

!
!

! J *(x)  is a Lyapunov function ! (Lyapunov) Stability !

x  
0 = x

x  
4

x  
2

x  
3x  

5

x̃6

x  
1 = x

+

J  (x) ≤ J̃(x)

J  (x+)− J  (x) ≤ J̃(x+)− J  (x) ≤ −l(x, u  
0) ≤ 0

Xf

J̃(x) = J  (x)− l(x, u  
0) + Vf (x̃N+1)− Vf (x  

N) + l(x
 
N ,κf (x

 
N))
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Stability of MPC – Remarks !

 33!

•  The terminal set Xf   and the terminal cost ensure recursive feasibility and 
stability of the closed-loop system. !
But: the terminal constraint usually reduces the region of attraction.!

!

•  If the open-loop system is stable, Xf  can be chosen as the positively 
invariant set of the system under zero control input, which is feasible.!

!

•  Often no terminal set Xf , but N is required to be sufficiently large to ensure 
recursive feasibility!
!  Applied in practice, makes MPC work without terminal constraint!
!  Determination of a sufficiently long horizon difficult!
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Proof of asymptotic stability!
!
!
!
!
!

!
!

Extension of Lyapunov’s direct method: (see e.g. [Vidyasagar, 1993])!

If the continuous Lyapunov function additionally satisfies!
!
then the closed loop system converges to the origin and is hence asymptotically stable.!
!

Recall: Decrease of the optimal MPC cost was given by!
!
           where the stage cost was assumed to be positive and only 0 at 0.!
!

! The closed-loop system under the MPC control law is asymptotically stable.!

Definition: Asymptotic stability!

34!

V (x(k + 1))− V (x(k)) < 0 ∀x #= 0

$ 
% 
x(0) 

X
x(k + 1) = fκ(x(k)) X

X limk→∞ �x(k)� = 0 x(0) ∈ X

J  (x(k + 1))− J  (x(k)) ≤ −l(x(k), u  
0)



!"#$%!#&'('$)#*$+(
+!,$*!#$*-

Extension to nonlinear MPC!
Consider the nonlinear system dynamics:!
!

!  Nonlinear MPC problem:!

!
!

•  Presented assumptions on the terminal set and cost did not rely on linearity!
•  Lyapunov stability is a general framework to analyze stability of nonlinear 

dynamic systems!
!

! Results can be directly extended to nonlinear systems. !

J∗(x) = min
x,u

N−1�

i=0

l(xi , ui) + Vf (xN)

xi+1 = f (xi , ui)

Cxi +Dui ≤ b
xN ∈ Xf ,
x0 = x ,

35!

x+ = f (x, u)
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Outline!

 36!

•  Motivating Example: Cessna Citation Aircraft!
!
•  Constraint satisfaction and stability in MPC!

–  Main idea !
–  Problem setup for the linear quadratic case!

!
•  How to prove constraint satisfaction and stability in MPC!

!
•  Implementation !

!
•  Theory extensions !
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Multi-Parametric Toolbox!

 37!

Modeling! Optimal control!

Computational !
geometry!

Analysis!

MPT Toolbox: M. Kvasnica, P. Grieder and M. Baotic!
Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools!
Michal Kvasnica!
ISBN: 3639206444!
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1.  Compute terminal weight P and LQR 
control law K by solving the discrete time 
Riccati equation!

!
!
!

2.  Compute terminal set Xf :  
–  Ellipsoidal invariant set of the form!
 !
!

   ! Can be written in the form of a !
! Linear Matrix inequality (LMI)!
!!

!

–  Polytopic invariant set of the form!

!

!

Implementation using Matlab and MPT!

Xf := {x |Hx ≤ K}

Xf := {x | xTPEx ≤ 1}

M
at

la
b!

[K,P]=dlqr(A,B,Q,R)	

Xf

hi

0 

38!

Double Integrator: !

N = 5, Q =

�
1 0
0 1

�
, R = 10

x+ =

�
1 1
0 1

�
x +

�
0
1

�
u

�
−5
−5

�
≤ x ≤

�
5
5

�
−0.5 ≤ u ≤ 0.5

[Boyd et al., LMIs in System and Control Theory, 1994]!
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Implementation using Matlab and MPT:"
Polytopic Invariant Terminal Set!

 39!

•  Linear system x+ = Ax + Bu 
•  LQR controller u = K x 
•  Input and state constraints !

•  Compute maximum invariant set that satisfies the constraints!

U = {u | umin ≤ u ≤ umax} X = {x | xmin ≤ x ≤ xmax}
M
P
T!

X = polytope([I;-I],[xmax; -xmin]) % State constraints	
U = polytope([K;-K],[umax; -umin]) % Input constraints	

M
P
T!

P = X & U	
while 1	
  Pprev = P;	
  P = P & inv(A+BK)*P;	
  if Pprev == P, break; end	
end	
!

Iteration 1!

Iteration 2!
Iteration 3!

O∞ = {xk | (A+ BK)
kxk ∈ O∞, ∀k ≥ 0}
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Implementation using Matlab and MPT:"
Polytopic Invariant Terminal Set!

 40!

•  Linear system x+ = Ax + Bu 
•  LQR controller u = K x 
•  Input and state constraints !

•  Compute maximum invariant set that satisfies the constraints!

•  Simpler procedure	

U = {u | umin ≤ u ≤ umax} X = {x | xmin ≤ x ≤ xmax}
M
P
T!

X = polytope([I;-I],[xmax; -xmin]) % State constraints	
U = polytope([K;-K],[umax; -umin]) % Input constraints	

M
P
T!

P = X & U	
while 1	
  Pprev = P;	
  P = P & inv(A+BK)*P;	
  if Pprev == P, break; end	
end	
!

Iteration 1!

Iteration 2!
Iteration 3!

M
P
T!

X = mpt_infset(A+BK, X&U, 100); 	

O∞ = {xk | (A+ BK)
kxk ∈ O∞, ∀k ≥ 0}
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Example: Cessna Citation Aircraft"
Revisited!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=4 

MPC controller with input constraints |ui |"0.262  
and rate constraints!
approximated by!

|u̇i | ≤ 0.349
|uk − uk ⌧ 1| ≤ 0.349Ts , u ⌧ 1 = uprev

Decrease in the prediction 
horizon causes loss of the 
stability properties  
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Example: Cessna Citation Aircraft"
Terminal cost and constraint provide stability guarantee!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=4 

MPC controller with input constraints |ui |"0.262  
and rate constraints!
approximated by!

|u̇i | ≤ 0.349
|uk − uk ⌧ 1| ≤ 0.349Ts , u ⌧ 1 = uprev

!  Inclusion of terminal 
cost and constraint 
provides stability  
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Outline!

 43!

•  Motivating Example: Cessna Citation Aircraft!
!
•  Constraint satisfaction and stability in MPC!

–  Main idea !
–  Problem setup for the linear quadratic case!

!
•  How to prove constraint satisfaction and stability in MPC!

!
•  Implementation !

!
•  Theory extensions !

–  Reference Tracking !!
–  Uncertain Systems!
–  Soft constrained MPC!
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Extensions "
– Reference Tracking!

 44!

!

Consider the system !
!
!

Regulation vs. Tracking:!
•  Regulation: !Reject disturbances around one desirable steady-state!
•  Tracking: !Make output follow a given reference r !
!

Steady-state computation:!
Compute steady-state that yields !
the desired output!
!

For a solution to exist the matrix must be full column rank and the steady-
state must be feasible, i.e.!xss ∈ X, uss ∈ U

Note: Many 
solutions possible!

x+ = Ax + Bu

y = Cx

[
I − A −B
C 0

] [
xss
uss

]
=

[
0
r

]
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Example: Cessna Citation Aircraft"
Reference tracking!

Problem parameters: !
Sampling time Ts=0.25sec,!
Q=I, R=10, N=10 

Track given altitude profile:!

45!
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Extensions "
– Reference Tracking!
MPC problem for reference tracking: !
Penalize the deviation from the desired steady-state !
!
!
!
!
!
!
!
•  Steady-state is computed at each time step!
•  Same problem structure as the standard MPC problem with additional 

parameter r 
!

Steady-state offset: If the model is not accurate the output will show an offset 
from the desired reference!

Here: Reference assumed constant 
over horizon. !
If reference trajectory is known this can 
be included ! Preview !

46!

J∗(x) = min
x,u

N−1�

i=0

(xi − xss)TQ(xi − xss) + (ui − uss)TR(ui − uss) + (xN − xss)TP (xN − xss)

xi+1 = Axi + Bui

Cxi +Dui ≤ b
x0 = x

Note: Parameterized terminal set required for stability.!
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Extensions "
– Offset-free reference tracking!
Goal: Zero steady-state tracking error, i.e.  
!

Consider the augmented model:!
!
with w  &  Rw. 
 

Assume  size of w =number of states , Cw=I  and ! ! !       .!
Then the augmented system is observable.!
!

!  We can correct for the disturbance by choosing xss, uss   such that!

!

     where     is an estimate of the uncertainty obtained from a state observer.      !

! See [Mäder et al., Automatica 2009] for more details. !

47!

x+ = Ax + Bu + Bww

y = Cx + Cww

det

[
A− I Bw
C I

]
"= 0

[
I − A −B
C 0

] [
xss
uss

]
=

[
−Bw ŵ
r − Cw ŵ

]

ŵ

y(k)− r(k)→ 0 k →∞
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In practice, the nominal system model will not be accurate due to model 
mismatch or external disturbances that are acting on the system.!
!

Consider the uncertain system !
! !x += Ax + Bu+Bww 

where w &W  is a bounded disturbance.!
!

Stability:!
•  In the presence of uncertainties, asymptotic stability of the origin can often 

not be achieved. Instead, it can be shown that the trajectories converge to a 
neighborhood of the origin.!

•  Stability can be analyzed in the framework of input-to-state stability. !
Idea: Effect of the uncertainty on the system is bounded and depends on 
the size of the uncertainty.!

Feasibility?!

Extensions "
– Uncertain systems !

48!
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Extensions "
– Approaches for uncertain systems !

t!terminal 
set! Trajectories differ from what is expected using the 

nominal system model!
!  Uncertainties can lead to infeasibility of the 

MPC problem!

x 
x+=Ax+Bu+Bww 

Soft constrained MPC:!
Idea: Tolerate temporary violation of state constraints by constraint relaxation!

! Feasibility of the optimization problem despite disturbances!
!

Robust MPC:!
Idea: Design MPC problem for the worst-case disturbance by constraint  !    

!   tightening !

 !! Constraint satisfaction and stability of the uncertain system!
!

!

! 49!
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Idea: Input constraints are hard (e.g. actuator limitations),!
         state constraints may (temporarily) be violated!
!

•  Introduce soft state and terminal constraints by means of slack variables !
•  Introduce penalties on the slack variables in the cost!

!
!

Standard soft constrained MPC setup does not provide stability guarantees!
!

!  New soft constrained MPC setup with (robust) stability properties developed !
     in [Zeilinger et al., CDC 2010]!

Extensions"
– Soft constrained MPC!

Penalties on the amount of 
constraint violation!

Slack variables!

J∗(x) = min
x,u

N−1�

i=0

l(xi , ui) + l�(�i) + Vf (xN) + l�(�N)

xi+1 = Axi + Bui

Cxi +Dui ≤ b + �i
GNxN ≤ fN + �N
x0 = x

50!
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Further extensions!
•  Reference tracking with recursive feasibility guarantees!

 [Gilbert et al., 1994; Bemporad 1998; Gilbert & Kolmanovsky 1999, 2002; Limon et al., 2008; 
Borrelli et al., 2009; Ferramosca et al., 2009; …]!

•  Move blocking: Reduce the computational complexity by fixing the inputs or 
its derivatives to be constant over several time steps!
[Li & Xi 2007, 2009; Cagienard et al. 2007; Gondhalekar & Imura, 2010; …]!

•  Stochastic MPC: Consider uncertainties that are unbounded and/or follow a 
certain distribution!
–  Probabilistic constraints!
–  Expected value constraints!
–  Expected value cost!
[Lee et al. 1998; Couchman et al., 2005; Cannon et al., 2007; Grancharova et al. 2007; 
Hokayem et al., 2009; Cinquemani et al., 2011; … ]!

!
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