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Example: Cessna Citation Aircraft

Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

[ —1.2822 0 0.98 0] [ —0.3]
§ = 0 0 1 0 X+ 0 .
—5.4293 0 —1.8366 O —17
—128.2 128.2 0 0 0 Angle of attack

_[o 10 0]
Y“lo 0 0 1
* Input: elevator angle
« States: x;: angle of attack, x,: pitch angle, x;: pitch rate, x,: altitude
« Qutputs: pitch angle and altitude

» (Constraints: elevator angle £0.262rad(£15°), elevator rate +0.524rad (£60°)
pitch angle +0.349 (+30°)

horizon

Pitch angle S

Open-loop response is unstable (open-loop poles: 0, 0,-1.5594+2.2900/)

[J. Macigjowski, Predictive Control with constraints, 2002]
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LQR and Linear MPC with quadratic cost

* Quadratic performance measure
« Linear system dynamics x™ = Ax + Bu

y=Cx—+ Du
« Linear constraints on inputs and states

LQR: MPC:
0 g N—1 b
J¥(x) = nQ|un ZX,-TQX,' + u! Ru; J*(x) = rglun Z x! Qx; + u! Ru;
i=0 i=0
S.t. Xju11 = Ax; + Bu; S.t. Xj11 = Ax; + Bu,
X0 =X X0 =X
CX,' + DLI,' < b

. J

Assume: Q =Q" =0 R=R" =0

MPC problem can be translated into a quadratic program (QP)
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Linear MPC with linear costs

» Linear performance measure (e.g. economically motivated cost, errors)
« Linear system dynamics x* = Ax + Bu

y=Cx—+ Du
« Linear constraints on states and inputs

4 N—1

Resulting MPC problem:
J*(x) = min > 1Qxillp + IRl
' i=0

S.1. Xit+1 = AX,‘ + Bu,
Cxi+Du <b
X0 =X

Optimization problem can be translated into a linear program (LP) for p=1/c0.
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Example: Cessna Citation Aircraft
LQR with saturation

Linear quadratic regulator with saturated inputs:

Sampling time T_=0.25sec,
At time t = O the plane is flying with a deviation of Q=/ R=10

10m of the desired altitude, i.e. x (0)=[0; O; O; 10]

200 ! ! ! ! 2 = :
~ z ; ; | g8 > Closed-loop system is
E ~
£ 100 5 unstable

[} .
g 0 2 - Applying LQR control
= 100 5 and saturating the

200 ; L controller can lead to

0 : " ime (s6c) ® 10 instability...
s 05 ; T !
8 . Input is saturated
> ; ; |
fo)
o o L oL
©
S
©
o . | _ _
m _0.5 i i i i
0 2 4 6 8 10
Time (sec)
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Example: Cessna Citation 500 aircraft
MPC with bound constraints on inputs

MPC controller with input constraints |u;|<0.262

Sampling time T_=0.25sec,
QR=/, R=10, N=10

The MPC controller uses
the knowledge that the
elevator will saturate, but
it does not consider the
rate constraints.

Altitude X, (m)

Time (sec)
— 05 | | | | - System does not
iel . _ . . . \
£ | ‘ 1 | converge to desired
>S5
o steady-state but to a
S limit cycle
£ |
ks |
=05 > 4 6 8 10
Time (sec)
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Example: Cessna Citation Aircraft
MPC with all input constraints

MPC controller with input constraints |u;|<0.262

Sampling time T.=0.25sec,

and rate constraints |u;| < 0.349
Q=I, R=10, N=10

approximated by |ux — uk-1| < 0.3497T5, u_1 = Uprey

20 - - . . 02 ~
= &8 The MPC controller
= 10 o < considers all constraints
S 2 on the actuator
= 0]3 _0_22
< I
10 - - . . 04> 2 Closed-loop system is
0 2 4 6 8 10 |
Time (sec) stablel!
= 02 —> Efficient use of the
£ trol authorit
> 0dp con y
@
g 0
£ -0.1
3
w02 2 4 6 8 10
Time (sec)
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Example: Cessna Citation Aircraft

Inclusion of state constraints

MPC controller with input constraints |u;|<0.262
and rate constraints |u;| < 0.349

approximated by |ux — uk-1| < 0.3497T5, u_1 = Uprey

Altitude X, (m)

Elevator angle u (rad)

150 0.5 5
o
100 e\t 0 P
)
BOP -\ v AN )
&
| - 1-0.5
Op N\ / N } — } S
- Pitch angle ~-0.9, i.e. -50° o
_50 i i i i _1
0 2 4 6 8 10
Time (sec)
0.5 !
-0.5 i
0 2 4 6 8 10
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Problem parameters:

Sampling time T.=0.25sec,
QR=/, R=10, N=10

Increase step:

At time t = O the plane is
flying with a deviation of
100m of the desired
altitude,

l.e. x (0)=[0; O; O; 100]

-> Pitch angle too large
during transient



Example: Cessna Citation Aircraft
Inclusion of state constraints

MPC controller with input constraints |u;|<0.262

and rate constraints |u;| < 0.349 Sampling time T,=0.25sec,
- Q=I,R=10, N=10
approximated by |ux — uk-1| < 0.3497T5, u_1 = Uprey

150 % ; g g 04 5 :
= Constraint,qn pitch angle active g Add state constraints for
e A o T 02 &~ passenger comfort:

: 0]
s S0 i 0 ©
E ; 5 |x,] <0.349
< O ; ~0.25
; T
—50 : 0.4
0 2 4 6 8 10
Time (sec)
S 05 ,
£ 5
> |
Q :
(@) :
- |
g z
© :
o 5
w -0.5 i
0 2 4 6 8 10

Time (sec)

) AUTOMATIC CONTROL 9
LABORATORY



Example: Cessna Citation Aircraft
Shorter horizon causes loss of stability

MPC controller with input constraints |u,|<0.262

Sampling time T_=0.25sec,

and rate constraints |u;| < 0.349
approximated by |ux — uk-1| < 0.3497T5, u_1 = Uprey Q=/, Rlo’%“ )
_ oo § Decrease in the prediction
i <" horizon causes loss of the
8 0 2 stability properties
< 5
: o
, -0.5
2 4 6 8 10
Time (sec)
T 05 : : : ! :
£ | This part of the workshop:
2 | | How can constraint
5 satisfaction and stability in
g MPC be guaranteed?
L -05 5
0 2 4 6 8 10

Time (sec)
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Outline

« Motivating Example: Cessna Citation Aircraft
« (Constraint satisfaction and stability in MPC
— Main idea
— Problem setup for the linear quadratic case
« How to prove constraint satisfaction and stability in MPC

* |Implementation

« Theory extensions
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Loss of feasibility and stability guarantees

What can go wrong with standard MPC approach?

N—1
. , min Z X! Qx; + u! Ru
- No feasibility guarantee, i.e. the MPC problem S
may not have a solution st X1 = Ax; + Bu;
- No stability guarantee, i.e. trajectories may not Xo = X
converge to the origin L Cxi+ Du; < b

Definition: Feasible set

The feasible set X is defined as the set of initial states x for which the MPC
problem with horizon N is feasible, i.e.

Xy ={x|Iuwg, ..., uy—_1] suchthat Cu; + Dx; < b, i =1
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Example: Loss of feasibility

Consider the double integrator:  x* = [(1) ﬂ X + m u

subject to the input constraints —0.5<u <0.5

—5 5
and the state constraints [_5] <X < [ ]
1 0

We choose N =3,Q = [O )

] , R =10 . . Set of initial
feasible states
(feasible set)

Time step 1: x(0)=[-4;4] , uj(x)=-0.5 °
Time step 2: x(1)=[ 0;3] , uy(x)=-0.5 P
Time step 3: x(2)=[ 3;2] MPC problem 1.5

Infeasible
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Example: Loss of stability

Consider the unstable system: xT = [2 L ] X + H u

0 0.5 0
subject to the input constraints —1<u<l
—10 10
i < x <
and the state constraints [_1 O] <x < [1 O]

1 0
We choose Q = [O 1]

and investigate the stability properties for different horizons N and weights R by
solving the finite horizon MPC problem in a receding horizon fashion ...
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Example: Loss of stability

1 R=10, N=2 @®» 1w
2 R=2, N=3 5
3 R=1, N=4

*

Initial points leading to trajectories
that converge to the origin
* |Intitial points that diverge -10

-10 -5 0 5 10
2

Parameters have complex effect on closed-loop trajectory
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Feasibility and stability in MPC — Main |dea

Main idea:

Introduce terminal cost and constraints to explicitly ensure stability and
feasibility:

i N—1 B
J*(x) = min Z x! Qx; + u! Ru; +- Terminal cost
ot i=0
S.1. Xi+1 = AX/ + Bu,
Cxi+ Dui <b -
@
_ Terminal constraint %
o©
(42}
— o
N X0 — X Y,
- How to choose Pand ;7
(I)ﬂ AUTOMATIC CONTROL 16
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How to choose the terminal set and cost
— Main Idea

* Problems originate from the use of a ‘short sight’ strategy

- Finite horizon causes deviation between the open-loop prediction and

the closed-loop system:
P Sy Set of feasible

5 Closed-loop initial states for
trajectories Open-loop 5 / open-loop
prediction

7&\ predictions

Set of initial
states leading to
feasible closed-
loop trajectories

X' 0 <! 0
-5 * -5 * *
-5 0 5 -5 0 5
X X

» |deally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

—> Design finite horizon problem such that it approximates the infinite horizon
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How to choose the terminal cost

We can split the infinite horizon problem into two subproblems:

/(D Up to time k=N, where the 2 For k>N, where there are no

constraints may be active constraints active

N—1 00
* 0 i T : T :

J(x) = min Z x! Qx; + u! Ru; e (e z;/ X; Qxi + u; Rui

=0 1=
st X1 = Ax; + Bu; \ st. X1 =Ax+ By, }

CX,' + DU,' S b Y

N N - Unconstrained LQR
O p—

starting from state x,

Bound the tail of the infinite horizon cost from N to oo using the
LQR control law u=K 5z x

xy" Pxy, is the corresponding infinite horizon cost

P is the solution of the discrete-time algebraic Riccati equation

Choice of N such that constraint satisfaction is guaranteed?

) AUTOMATIC CONTROL
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How to choose the terminal set

Terminal constraint provides a sufficient condition for constraint satisfaction:

— infinite hori t

J(x) = min TOx + uT Ry, nfinite horizon cos
() =mi IZ:;X’ Qi+ u R -+ G starting from x,,

s.t. Xit1 = AX,‘ + BLI,'
Cxi+Dui <b

« Allinput and state constraints are satisfied for the closed-loop system using
the LQR control law for x € X

« Terminal set is often defined by linear or quadratic constraints

- The bound holds in the terminal set and is used as a terminal cost
- The terminal set defines the terminal constraint

In the following: Show that this problem setup provides feasibility and stability
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Outline

« Motivating Example: Cessna Citation Aircraft
« (Constraint satisfaction and stability in MPC
— Main idea
— Problem setup for the linear quadratic case
« How to prove constraint satisfaction and stability in MPC

* |Implementation

« Theory extensions
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Formalize goals:
Definition of feasibility and stability

Goal 1: Feasibility at all times

Definition: Recursive feasibility

The MPC problem is called recursively feasible, if for all feasible initial states
feasibility is guaranteed at every state along the closed-loop trajectory.

Goal 2: Stability

Definition: Lyapunov stability
The equilibrium point at the origin of system x(k + 1) = Ax(k) + Bk(x(k)) =
f.(x(k)) is said to be (Lyapunov) stable in X if for every € > 0, there exists a
d(e) > 0 such that, for every x(0) € X D

Ix(O)I < o(e) = [Ix(K)[| <eVkeN .

o
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Employed concept for the analysis of feasibility:
Invariant sets

Definition: Invariant set
A set O is called positively invariant for system x(k + 1) = f.(x(k)), if

x(k) e O = f.(x(k)) e O, VkeN .

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set O, .

/)
/

Infeasible after

Invariant
- Recursively
feasible

Infeasible after
two steps
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Analysis of Lyapunov stability

Lyapunov stability will be analyzed using Lyapunov’s direct method:

Definition: Lyapunov function

Let X' be a positively invariant set for system x(k + 1) = f.(x(k)) containing a
neighborhood of the origin in its interior. A function V' : X — R.! is called a
Lyapunov function in X if for all x € X:
V(x) > 0Vx #0, V(0) =0,
Vix(k+1)) —V(x(k) <0

Theorem: (e.g. [Vidyasagar, 1993))

If a system admits a Lyapunov function in X, then the equilibrium point at the
origin is (Lyapunov) stable in X.

TFor simplicity it is assumed that \x) is continuous. This assumption can be relaxed by requiring an additional
state dependent upper bound on V(x), see e.g. [Rawlings & Mayne, 2009]
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How to prove feasibility and stability of MPC

Main steps:

* Prove recursive feasibility by showing the existence of a feasible control
seqguence at all time instants when starting from a feasible initial point

NOTE: Recursive feasibility does not imply stability of the closed-loop system ]

* Prove stability by showing that the optimal cost function is a Lyapunov
function

We will discuss two main cases in the following:

— Terminal constraint at zero: Xy =0
— Terminal constraint in some (convex) set:  x,, € &;

For simplicity, we use the more general notation:
- N-1
J (x) =mingy >, /(X,',,T\U,') + Vf('?\(/\/)
stage cost  terminal cost
(In the quadratic case: /(x;, u;) = x" Qx; + u! Ruj, Vi(xn) = x/, Pxn )
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Stability of MPC — Zero terminal state constraint

Terminal constraint x,=0:

« Assume feasibility of x and let [uy, uy, . . .,uy ;] be the optimal
control sequence computed at x ko

/

0]
2/ X0

) AUTOMATIC CONTROL
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Stability of MPC — Zero terminal state constraint

Terminal constraint x,=0:

« Assume feasibility of x and let [uy, uy, . . .,uy ;] be the optimal
control sequence computed at x

oy

2]

« At x* the control sequence [uy, us, . . .,uy_;, 0]is feasible i
(apply O control input to stay at the origin) é,ct? Xy =

- Recursive feasibility
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Stability of MPC — Zero terminal state constraint

Terminal constraint x,=0:

« Assume feasibility of x and let [uy, uy, . . .,uy ;] be the optimal

control sequence computed at x ko
« At x* the control sequence [uy, us, . . .,uy_;, 0]is feasible 5/ -
(apply O control input to stay at the origin) g,g‘j'? Xy =
- Recursive feasibility
« The associated cost function value is given by:
J(x*) = J (x) = I(x, uy) + 1(0,0)
Subtract cost Add cost for
atstage 0  stayingatO
- We obtain for the optimal solution J (x) < J(x)
J(x*) = J (x) <J(x*) = J (x) < —=I(x,uy) <0
- J(x) is a Lyapunov function - (Lyapunov) Stability
(PR e conrror 07



Extension to more general terminal sets

Problem: The terminal constraint x,=0 reduces the feasible set

Goal: Use convex set for &; that contains the origin in its interior
Example:
3.  Feasible set for x, € 47
Feasibl s 0 Double Integrator:
ol |, Feasible set for x,= 1 1 0
ool

]<X<[] -05<u<05

I—I

1 0
0 1

N=5Q= [ ]Rle

How can the proof be generalized to the constraint x,, e A&; ?

) AUTOMATIC CONTROL
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Stability of MPC — Main result

Consider that the following standard assumptions hold:

(D The stage cost is a positive definite function, i.e. it is strictly positive and
only zero at the origin

2) The terminal set is invariant under the local control law & (x):
xT = Ax + Bkr(x) € Xf forall x € X

All state and input constraints are satisfied in A;:
Xr C X, K,f(X) e U forall x € Xr

(3 The terminal cost is a continuous Lyapunov function in the terminal set .t; :
Vf(X+) — Vf(X) < —/(X, K,f(X)) for all x € Xr

- The closed-loop system under the MPC control law is stable in the feasible

set .1,
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Stability of MPC — Outline of the proof

« Assume feasibility of x and let [uy, uy, . . .,uy ;] be the optimal
control sequence computed at x

) AUTOMATIC CONTROL
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Stability of MPC — Outline of the proof

« Assume feasibility of x and let [uy, uy, . . .,uy ;] be the optimal
control sequence computed at x

« At x* the control sequence [uf, us, . . .,k (xy)] is feasible:
xyisin A > Kkq(xy) is feasible and x,"=Axy+Bk(xy)in A

- Terminal constraint provides recursive feasibility

) AUTOMATIC CONTROL
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Stability of MPC — Outline of the proof

« Assume feasibility of x and let [uy, uy, . . .,uy ;] be the optimal
control sequence computed at x

« At x* the control sequence [uf, us, . . .,k (xy)] is feasible:
xyisin A > Kkq(xy) is feasible and x,"=Axy+Bk(xy)in A

- Terminal constraint provides recursive feasibility

« The associated cost function value is given by:

J(x) = J (x) = I(x, p) \+ Ve(Rn1) — VE(Oxy) + 11Xy, Kf(X/\/))}

Vi(x) is a Lyapunov function: §Y0
« We obtain for the optimal solution J (x) < J(x) :

J(xT) = J (x) < J(xT) = J (x) < —I(x, 1y) <0
- J(x) is a Lyapunov function - (Lyapunov) Stability
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Stability of MPC — Remarks

« The terminal set .4; and the terminal cost ensure recursive feasibility and
stability of the closed-loop system.
But: the terminal constraint usually reduces the region of attraction.

* If the open-loop system is stable, .1; can be chosen as the positively
invariant set of the system under zero control input, which is feasible.

« Often no terminal set ¢, but N is required to be sufficiently large to ensure
recursive feasibility
- Applied in practice, makes MPC work without terminal constraint

—> Determination of a sufficiently long horizon difficult
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Proof of asymptotic stability

Definition: Asymptotic stability
Given a Pl set X including the origin as an interior-point, the equilibrium point at
the origin of system x(k + 1) = f.(x(k)) is said to be asymptotically stable in X
if it is

* (Lyapunov) stable =

5 >
® attractive in X, i.e. limx_o ||X(k)|| = O for all x(0) € X. &ﬂ(})

Extension of Lyapunov’s direct method: (see e.g. [Vidyasagar, 1993))
If the continuous Lyapunov function additionally satisfies
V(x(k+ 1)) —V(x(k)) <0Vx #0
then the closed loop system converges to the origin and is hence asymptotically stable.

V.

Recall: Decrease of the optimal MPC cost was given by
J (x(k+1)) = J (x(k)) < —=I(x(k), up)
where the stage cost was assumed to be positive and only O at 0.

- The closed-loop system under the MPC control law is asymptotically stable.
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Extension to nonlinear MPC

Consider the nonlinear system dynamics: x* = f(x, u)

- Nonlinear MPC problem:
f el R

J*(x) = min Z I(xi, ui) + Vr(xn)
. i=0
st Xy = (X, uj)
Cxi+Du <b
XN c Xr ,
N\ X0 = X y,

* Presented assumptions on the terminal set and cost did not rely on linearity

« Lyapunov stability is a general framework to analyze stability of nonlinear
dynamic systems

- Results can be directly extended to nonlinear systems.

(I)ﬂ AUTOMATIC CONTROL
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Outline

« Motivating Example: Cessna Citation Aircraft
« (Constraint satisfaction and stability in MPC
— Main idea
— Problem setup for the linear quadratic case
« How to prove constraint satisfaction and stability in MPC

* |Implementation

« Theory extensions
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Multi-Parametric Toolbox

MPT Toolbox: M. Kvasnica, P. Grieder and M. Baotic

Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools
Michal Kvasnica

ISBN: 3639206444

) AUTOMATIC CONTROL
LABORATORY

37



Implementation using Matlab and MPT

1. Compute terminal weight Pand LQR

control law K by solving the discrete time i [1 1] . [o]
Riccati equation 0 1 1

I [K,P]=d1quA,B,Q,R)

2. Compute terminal set t;:
— Ellipsoidal invariant set of the form

Xr = {x|x"Pex <1}

- Can be written in the form of a
Linear Matrix inequality (LMI) h;

—5
-5

I—l

]<X<[] —-05<u<05

Matlab

1 0
0 1

n=s.0=y J|.R=10

[Boyd et al., LMIs in System and Control Theory, 1994]

— Polytopic invariant set of the form Xr
Xr = {x|Hx < K}

) AUTOMATIC CONTROL
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Implementation using Matlab and MPT:
Polytopic Invariant Terminal Set

« Linear system xt = Ax+ Bu
 LQR controller u= K x
* Input and state constraints U = {u| tmin < U < Umax} X = {X | Xmin < X < Xmax}

M

X

e U

« Compute maximum invariant set that satisfies the constraints
Ooo = {xx | (A+ BK)*xx € Oy, Yk > 0}

polytope([I;-1I],[xmax; -xmin]) % State constraints
polytope([K;-K], [umax; -umin]) % Input constraints

P=X&U .
while 1 lteration 1

Pprev = P;

P = P & inv(A+BK)*P; |

if Pprev == P, break; end lteration 3
end lteration 2
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Implementation using Matlab and MPT:
Polytopic Invariant Terminal Set

« Linear system xt = Ax+ Bu
 LQR controller u= K x
* Input and state constraints U = {u| tmin < U < Umax} X = {X | Xmin < X < Xmax}

M
X
Iy U

« Compute maximum invariant set that satisfies the constraints
Ooo = {Xx | (A+ BK)*x, € O, Yk >0}

polytope([I;-1I],[xmax; -xmin]) % State constraints
polytope([K;-K], [umax; -umin]) % Input constraints

P=X&U .
while 1 lteration 1

Pprev = P;

P = P & inv(A+BK)*P; |

if Pprev == P, break; end lteration 3
end lteration 2

« Simpler procedure
X = mpt_infset(A+BK, X&U, 100);

o=
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Example: Cessna Citation Aircraft

Revisited
MPC controller with input constraints |u;|<0.262
and rate constraints |u;| < 0.349 Sampling time T,=0.25sec,

QR=I, R=10, N=4

/

approximated by |ux — uk-1| < 0.3497T5, u_1 = Uprey

20 5 ; g g 05
— : : : : 9 ) ) )
E ~ Decrease in the prediction
2 0 2 horizon causes loss of the
[ . '
g : stability properties
E
-20

Time (sec)
< 05 g
& 5
= |
Q2 :
(@)] :
s 5
S |
© :
3 5
W 0.5 i

0 2 4 6 8 10
Time (sec)
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Example: Cessna Citation Aircraft

Terminal cost and constraint provide stability guarantee

MPC controller with input constraints |u;|<0.262
and rate constraints |u;| < 0.349

Problem parameters:

Sampling time T_=0.25sec,
QR=/, R=10, N=4

approximated by |ux — uk-1| < 0.3497T5, u_1 = Uprey

Altitude X, (m)

Elevator angle u (rad)

20 g 02 5
" . % > Inclusion of terminal
= cost and constraint
0 0.2° provides stability
1% 2 4 1004
Time (sec)
0.2 g
s 10
Time (sec)
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Outline

« Motivating Example: Cessna Citation Aircraft

« (Constraint satisfaction and stability in MPC
— Main idea
— Problem setup for the linear quadratic case

« How to prove constraint satisfaction and stability in MPC
* |Implementation

* Theory extensions
— Reference Tracking
— Uncertain Systems
— Soft constrained MPC
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Extensions
— Reference Tracking

Consider the system x™ = Ax + Bu

y =Cx

Regulation vs. Tracking:

Regulation: Reject disturbances around one desirable steady-state
Tracking:  Make output follow a given reference r

X 0 .
Compute steady-state that yields 0 55] — [ ] Note: Many

Uss r solutions possible
the desired output

Steady-state computation: [/_ A _RB
il

For a solution to exist the matrix must be full column rank and the steady-
state must be feasible, i.e. x.c € X, u.c € U

(I)ﬂ AUTOMATIC CONTROL
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Example: Cessna Citation Aircraft
Reference tracking

Track given altitude profile:

Sampling time T_=0.25sec,
QR=/, R=10, N=10

055
— {
E -
><<r [}
o =
S S
_43 ©
= E
< S
o
-0.5

20

Time (sec)

o

@
=1

()

[s)

[

()

S

©

>

o . ; _
LIJ 1 1 1

0 5 10 15 20
Time (sec)
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Extensions
— Reference Tracking

MPC problem for reference tracking:
Penalize the deviation from the desired steady-state
4 )
N—1
J(x) = Tin Z(Xi — Xss)TQ(Xi — Xss) + (Ui — USS)TR(Ui — Uss) + (Xnv — Xss)TP(XN — Xss)
- i=0

S Xy = Ax; + Bu; Here: Reference assumed constant
Cx; + Duj <b over horizon.
If reference trajectory is known this can

& — be included > Preview

« Steady-state is computed at each time step

« Same problem structure as the standard MPC problem with additional
parameter r

Steady-state offset: If the model is not accurate the output will show an offset
from the desired reference

(PHE T ieon™  Note: Parameterized terminal set required for stability.



Extensions
— Offset-free reference tracking

Goal: Zero steady-state tracking error, i.e. y(k) — r(k) — 0 for k — oo

Consider the augmented model: x* = Ax + Bu + B, w

y=Cx+C,w
with w € RW.
. A—1 B,
Assume size of w=number of states, C, =/ and det C | # 0
Then the augmented system is observable.
4 )

- We can correct for the disturbance by choosing x,, u,, such that
| —A —B| |xs| | —Buw
C 0 | |uss| |r—C,w

where w is an estimate of the uncertainty obtained from a state observer.

- See [Méader et al., Automatica 2009] for more details.
. J
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Extensions
— Uncertain systems

In practice, the nominal system model will not be accurate due to model

mismatch or external disturbances that are acting on the system.

Consider the uncertain system
xt=Ax+ Bu+B,w
where we W is a bounded disturbance.

Stability:

* In the presence of uncertainties, asymptotic stability of the origin can often
not be achieved. Instead, it can be shown that the trajectories converge to a
neighborhood of the origin.

« Stability can be analyzed in the framework of input-to-state stability.
|dea: Effect of the uncertainty on the system is bounded and depends on
the size of the uncertainty.

Feasibility?
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Extensions
— Approaches for uncertain systems

> X
Ny xt=Ax+Bu+B,w
@©

@

terminal
set Trajectories differ from what is expected using the

nominal system model
- Uncertainties can lead to infeasibility of the
MPC problem

Soft constrained MPC:
|dea: Tolerate temporary violation of state constraints by constraint relaxation
- Feasibility of the optimization problem despite disturbances

Robust MPC:

ldea: Design MPC problem for the worst-case disturbance by constraint
tightening

- Constraint satisfaction and stability of the uncertain system

) AUTOMATIC CONTROL 4
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Extensions
— Soft constrained MPC

ldea: Input constraints are hard (e.g. actuator limitations),
state constraints may (temporarily) be violated

* Introduce soft state and terminal constraints by means of slack variables
* Introduce penalties on the slack variables in the cost

J*(x) = min Z 1(x;, uj) +-+ Vi (xn) +- Penalties on the amount of

constraint violation
S.1. Xit+1 = AX,‘ + Bu;

CX,-+Du,-§b+.

Slack variabl
Grx < +. ack variables

X0

Standard soft constrained MPC setup does not provide stability guarantees

- New soft constrained MPC setup with (robust) stability properties developed
IN [Zeilinger et al., CDC 2010]
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Further extensions

* Reference tracking with recursive feasibility guarantees

[Gilbert et al., 1994, Bemporad 1998, Gilbert & Kolmanovsky 1999, 2002; Limon et al., 2008;
Borrelli et al., 2009, Ferramosca et al., 2009; ...]

* Move blocking: Reduce the computational complexity by fixing the inputs or
its derivatives to be constant over several time steps
[Li & Xi 2007, 2009; Cagienard et al. 2007, Gondhalekar & Imura, 2010; ...]
« Stochastic MPC: Consider uncertainties that are unbounded and/or follow a
certain distribution
— Probabilistic constraints
— Expected value constraints

— Expected value cost

[Lee et al. 1998; Couchman et al., 2005, Cannon et al., 2007; Grancharova et al. 2007;
Hokayem et al., 2009, Cinquemani et al., 2011, ... ]
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