Real-time online Model Predictive Control

Colin Jones, Melanie Zeilinger, Stefan Richter

Real-time synthesis: Complexity as a specification

- Hardware platform bounds computation time and storage
- Current real-time explicit methods are limited to small problem dimensions
- → Online MPC can be applied to all problem dimensions

This talk: Real-time online MPC for high-speed large-scale systems

- → Fast online optimization
- → Satisfaction of real-time constraint

Fast online optimization

Many methods available:

CVX

Matlab Software for Disciplined Convex Programming http://cvxr.com/cvx/

CVXMOD

Convex optimization software in Python http://cvxmod.net/

CVXGEN

Code Generation for Convex Optimization http://cvxgen.net/

qpOases

Online Active Set Strategy http://www.kuleuven.be/ optec/software/qpOASES

OOQP

Object-oriented software for quadratic programming http://pages.cs.wisc.edu/~swright/oogp/

QPSchur

A dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming [Bartlett et al., '06]

...many more

Online optimization can be applied to control high-speed systems

No guarantees on system theoretic properties when applied to MPC in a real-time setting.

Example: Effect of limited computation time

Closed loop trajectory: Optimal control law

Closed loop trajectory:
Optimization stopped after 4 iterations
= max computation time of 21ms

Unstable example

$$x^{+} = \begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
$$|x_{1}| \leq 5, -5 \leq x_{2} \leq 1$$
$$|u| \leq 1, N = 5, Q = I, R = 1$$

Limited computation time -> No stability properties

Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

- within the real-time constraint.
- a feasible solution
- satisfying stability and performance criteria
- for any admissible initial state is found.

NOTE: Optimality not required

We present two methods for linear systems:

Setting Linear state and input 'Simple' input constraints

constraints (e.g. box constraints)

Time scale Milliseconds Microseconds

Idea Provide guarantees for any time Compute a priori bounds on the

constraint required online computation time

Approach Robust MPC with stability Fast gradient method

constraints

[M.N. Zeilinger et al., CDC 2009] [S. Richter et al., CDC 2009]

Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

- within the real-time constraint
- a feasible solution
- satisfying stability and performance criteria
- for any admissible initial state is found.

NOTE: Optimality not required

We present two methods for linear systems:

Setting Linear state and input 'Simple' input constraints

constraints (e.g. box constraints)

Time scale Milliseconds Microseconds

Idea Provide guarantees for any time Compute a priori bounds on the

constraint required online computation time

Approach Robust MPC with stability Fast gradient method

constraints

[M.N. Zeilinger et al., CDC 2009] [S. Richter et al., CDC 2009]

Example: Stability under proposed real-time method

Closed loop trajectory:
Optimization stopped after 4 iterations
= max computation time of 21ms

Unstable example

$$x^{+} = \begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
$$|x_{1}| \leq 5, -5 \leq x_{2} \leq 1$$
$$|u| \leq 1, N = 5, Q = I, R = 1$$

Real-time robust MPC: Nearly optimal and satisfies time constraints

Optimal MPC scheme

Common warm-start: Shifted sequence

$$u(x) = [u_0, ..., u_{N-1}]$$

$$\bigcup_{\mathbf{u}_{shift}(x) = [u_1, ..., u_{N-1}, Kx_N]}$$

Optimal MPC scheme

Optimal MPC:

- Recursively feasible
- Stabilizing
- Unknown computation time...

Real-time MPC scheme – General idea

General approach for real-time MPC:

- Use of warm-start method
- Exploitation of structure inherent in MPC problems
- Early termination of the online optimization [Wang & Boyd 2008; Ferreau et al., 2008; Schofield, 2008; Cannon et al., 2007; .. Many more]

Real-time MPC scheme - Current methods

Suboptimal solution during online optimization steps

- can be infeasible
- can destabilize the system
- can cause steady-state offset

Problem definition

MPC problem:

$$J^{*}(x) = \min_{\mathbf{x}, \mathbf{u}} V_{N}(\mathbf{x}, \mathbf{u}) \triangleq \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + x_{N}^{T} P x_{N}$$
s.t. $x_{i+1} = A x_{i} + B u_{i}$

$$C x_{i} + D u_{i} \leq b$$

$$x_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x$$
Assumption: but approach applied to elliptical elliptic structure and the second stru

Assumption: \mathcal{X}_f is a polytope, but approach can be equivalently applied to ellipsoidal constraints.

Parametric Quadratic Program

Two QP formulations

Vectorized notation:
$$\mathbf{x} = [x_0^T, x_1^T, \dots, x_N^T]^T$$
, $\mathbf{u} = [u_0^T, u_1^T, \dots, u_{N-1}^T]^T$

Formulation 1:

- The predicted states can be expressed as $\mathbf{x} = Ax + B\mathbf{u}$
- The MPC problem can be written using only the optimization variable \mathbf{u} :

$$\min_{\mathbf{u}} \quad \mathbf{u}^T H_d \mathbf{u}$$

s.t. $G_d \mathbf{u} \leq f_d + E_d x$

Matrices are dense

Formulation 2:

- Optimize over sequence of states and inputs $z = [\mathbf{x}^T, \mathbf{u}^T]^T$:
- Introduce equality constraints relating the states and inputs:

$$\min_{z} z^{T} Hz$$
s.t. $Gz \leq f$

$$Fz = Ex$$

Matrices are sparse

Problem definition

MPC problem:

$$J^{*}(x) = \min_{\mathbf{x}, \mathbf{u}} V_{N}(\mathbf{x}, \mathbf{u}) \triangleq \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + x_{N}^{T} P x_{N}$$
s.t. $x_{i+1} = A x_{i} + B u_{i}$

$$C x_{i} + D u_{i} \leq b$$

$$x_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x$$
Assumption: but approach applied to elliptical equations of the property of

Assumption: \mathcal{X}_f is a polytope, but approach can be equivalently applied to ellipsoidal constraints.

Parametric Quadratic Program:

$$J^*(x) = \min_{z} z^T Hz$$
s.t. $Gz \le d$

$$Fz = Ex$$

Current real-time MPC methods

- Loss of feasibility

In practice: System will be subject to disturbances

Consider uncertain system: $x^+=Ax+Bu+w$ where $w \in \mathcal{W}$ is a bounded disturbance.

Problem: Disturbances cause loss of feasibility of the warm-start solution

→ Recovery of feasibility not guaranteed in real-time

Current real-time MPC methods

- Loss of stability

Requirement for stability: Lyapunov function

- → Use of MPC cost as Lyapunov function
- \rightarrow MPC cost has to decrease at every time step: $V_N(x, \mathbf{u}(x)) < V_N(x_{\text{prev}}, \mathbf{u}(x_{\text{prev}}))$

In a real-time approach this condition can be violated even when initializing with the shifted sequence

Interior-point methods:

Efficient optimization method for a wide range of optimization problems

Background: Primal barrier interior-point method

Optimization problem:

$$\min_{z} z^{T} Hz$$

s.t.
$$Gz \leq d$$

$$Fz = Ex$$

Note: here QP, but general nonlinear program possible

Background: Primal barrier interior-point method

Optimization problem:
$$\min_{z} z^{T} Hz$$

s.t.
$$Gz \leq d$$

$$Fz = Ex$$

$$\min_{z} z^{T} Hz - \mu \sum_{i=1}^{m} \log(-G_{i}z + d_{i}) \text{ barrier term with barrier}$$

s.t.
$$Fz = Ex$$

with barrier parameter $\mu > 0$

- Equality constrained problem
- Approximation improves as $\mu \rightarrow 0$

[Boyd & Vandenberghe, 2004]

Background: Primal barrier interior-point method

Optimization problem: $\min_{z} z^{T} Hz$

s.t. $Gz \leq d$

Fz = Ex

Barrier method:

$$\min_{z} z^{T} Hz - \mu \sum_{i=1}^{m} \log(-G_{i}z + d_{i}) \text{ barrier term with barrier}$$

s.t. Fz = Ex

with barrier parameter μ >0

– Solve augmented problem for decreasing values of μ

 $\rightarrow z^*(\mu)$ (central path)

- Convergence to the optimal solution of the original optimization problem for $\mu \rightarrow 0$

[Boyd & Vandenberghe, 2004]

Current real-time MPC methods

- Loss of stability

Requirement for stability: Lyapunov function

- → Use of MPC cost as Lyapunov function
- \rightarrow MPC cost has to decrease at every time step: $V_N(x, \mathbf{u}) < V_N(x_{\text{prev}}, \mathbf{u}_{\text{prev}})$

In a real-time approach this condition can be violated even when initializing with the shifted sequence

Interior-point methods:

- Efficient optimization method for a wide range of optimization problems
- Minimize augmented cost

$$\min_{z} z^{T} Hz - \mu \sum_{i=1}^{m} \log(-G_{i}z + d_{i})$$
s.t. $Fz = Ex$

- \rightarrow Decrease in cost does not enforce a decrease in MPC cost z^THz
- \rightarrow Steady-state offset for $\mu \neq 0$

Proposed real-time MPC method

Real-time online MPC:

Guarantee that

- within the real-time constraint
- a feasible solution
- satisfying stability criteria
- for any admissible initial state is found.

Proposed real-time MPC method

Real-time online MPC:

Guarantee that

- within the real-time constraint
- a feasible solution
- satisfying stability criteria
- for any admissible initial state is found.

- ← Early termination
- ← Robust MPC

- Robust MPC method provides feasibility of the warm-start solution by considering all possible disturbance sequences
- Use of primal feasible optimization method provides feasibility of the suboptimal solution obtained during online optimization

Proposed real-time MPC method

Real-time online MPC:

Guarantee that

- within the real-time constraint
- a feasible solution
- satisfying stability criteria
- for any admissible initial state is found.

- ← Early termination
- ← Robust MPC
- ← Lyapunov constraint

Introduce 'Lyapunov constraint':

Enforces decrease in suboptimal MPC cost at each iteration

$$V_N(x, \mathbf{u}) < V_N(x_{\text{prev}}, \mathbf{u}_{\text{prev}}) \text{ or } z^T H z \le z_{\text{prev}}^T H z_{\text{prev}}$$
 \rightarrow Quadratic constraint

- → (Input-to-state) Stability for *any* real-time constraint
- → Convergence to desired steady state

Extension to reference tracking: Extend tracking approach in [Limon et al., 2008]

Real-time robust MPC - Fast implementation Interior point optimization

Standard Newton step computation:

$$\begin{bmatrix} \nabla_{zz}^2 \mathcal{L} + \mu G^T S^{-2} G & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \triangle z \\ \triangle \nu \end{bmatrix} = - \begin{bmatrix} r_d \\ r_p \end{bmatrix}$$

Speed of optimization \propto Time to solve linear system

- Tracking formulation and Lyapunov constraint
 - → Modified Newton step matrix structure

Real-time robust MPC - Fast implementation Interior point optimization

Standard Newton step computation:

$$\begin{bmatrix} \nabla_{zz}^2 \mathcal{L} + \mu G^T S^{-2} G & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \triangle z \\ \triangle \nu \end{bmatrix} = - \begin{bmatrix} r_d \\ r_p \end{bmatrix}$$

Speed of optimization \propto Time to solve linear system

- Tracking formulation and Lyapunov constraint
 - → Modified Newton step matrix structure
- Matrices can be transformed into arrow structure
 - → Solved as efficiently as standard MPC problems
- Custom solver in C++ was developed
 - → Extending [Rao et al., 1998, Hansson, 2000 and Wang et al., 2008]

Real-time robust MPC - Fast implementation Interior point optimization

Standard Newton step computation:

$$\begin{bmatrix} \nabla_{zz}^2 \mathcal{L} + \mu G^T S^{-2} G & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \triangle z \\ \triangle \nu \end{bmatrix} = - \begin{bmatrix} r_d \\ r_p \end{bmatrix}$$

Speed of optimization \propto Time to solve linear system

- Tracking formulation and Lyapunov constraint
 - → Modified Newton step matrix structure
- Matrices can be transformed into arrow structure
 - → Solved as efficiently as standard MPC problems
- Custom solver in C++ was developed
 - → Extending [Rao et al., 1998, Hansson, 2000 and Wang et al., 2008]
- → Fast solution of tracking problem
- → Guaranteed stability for time constraints!
- → Computation times faster than methods with no guarantees

Numerical examples

Oscillating masses example

- Problem: 12 states, 3 inputs
- Fast MPC with guarantees: horizon N=10
 - → Computation of 5 Newton steps in 2 msec

Comparison: CPLEX 26 msec, SEDUMI 252 msec

Closed loop performance loss in % for varying iteration numbers

→ 2.5kHz sampling rate with stability guarantee

Random example

- Problem: 30 states, 8 inputs, horizon N=10
- → QCQP with 410 optimization variables and 1002 constraints
- → Computation of 5 Newton steps in 10 msec

Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

- within the real-time constraint.
- a feasible solution
- satisfying stability and performance criteria
- for any admissible initial state is found.

We present two methods for linear systems:

Target Linear state and input 'Simple' input constraints

constraints (e.g. box constraints)

Time scale Milliseconds Microseconds

Idea Provide guarantees for any time Compute a priori bounds on the

constraint required online computation time

Approach Robust MPC with stability Fast gradient method

constraints

[M.N. Zeilinger et al., CDC 2009] [S. Richter et al., CDC 2009]

Structured Optimization: Gradient Method for input constrained MPC

- Fast gradient method
 - Very simple
 - Easy to parallelize
 - Fast for large number of states (using dense problem formulation)

```
Require: U_{0} \in \mathbb{U}^{N}, V_{0} = U_{0}

1: for i = 1 to i_{\min} do

2: U_{i} = \pi_{\mathbb{U}^{N}} \left( V_{i-1} - \frac{1}{L} \nabla J_{N}(V_{i-1}; x) \right)

3: V_{i} = U_{i} + \beta_{i}(U_{i} - U_{i-1})

4: end for
```

Work per iteration

- 1 matrix-vector product
- 2 vector sums
- 1 projection

Key result: Can compute a priori bound on required number of iterations i_{\min}

[Y. Nesterov, 1983] [S. Richter et al., CDC 2009]

Fast Gradient Method : Time bound to ε -optimality

• Solution with approximation error ε in i_{min} steps:

$$i_{\min} \geq \left[\frac{\ln \frac{\epsilon}{\delta}}{\ln \left(1 - \sqrt{\frac{1}{\kappa}}\right)}\right]$$

- κ condition number
- δ measure of *initial residual*

Cold start:

$$\delta \le LR^2/2$$

- $u_{ws} = 0$
- R: radius of feasible set
- Easy to compute

Warm start:

$$\delta \leq 2 \max_{x \in \mathbb{X}_N} J_N(\mathbf{u}_{\text{WS}}; x) - J_N^*(x)$$

- u_{ws} : Warm start sequence
- Worst distance measured in terms of initial cost
- Hard to compute

Fast Gradient Method : Time bound to ε -optimality

• Solution with approximation error ε in i_{min} steps:

$$i_{\min} \geq \left[\frac{\ln \frac{\epsilon}{\delta}}{\ln \left(1 - \sqrt{\frac{1}{\kappa}}\right)}\right]$$

- κ condition number
- δ measure of *initial residual*

NOTE: Extension to state and input constraints possible using Lagrangian relaxation

[S. Richter et al., CDC 2011]

Cold start:

$$\delta \le LR^2/2$$

- $u_{ws} = 0$
- R: radius of feasible set
- Easy to compute

Warm start:

$$\delta \leq 2 \max_{\mathbf{x} \in \mathbb{X}_N} J_N(\mathbf{u}_{\text{WS}}; \mathbf{x}) - J_N^*(\mathbf{x})$$

- u_{ws} : Warm start sequence
- Worst distance measured in terms of initial cost
- Hard to compute

Example: Control of an AC-DC Power Converter

Control objectives:

- Track currents $i_{fg,1}$, $i_{fg,2}$, $i_{fg,3}$
- Actively dampen CL filter dynamics

Model: Marginally stable system in d-q coordinates:

6 states / 2 inputs / 2 disturbances / 2 controlled outputs

[S. Richter et al., ACC 2010]

Example: Control of an AC-DC Power Converter

MPC Tracking Problem:

$$J_{N}^{*}(q) = \min \|\delta x_{N}\|_{P}^{2} + \sum_{i=0}^{N-1} + \|\delta x_{i}\|_{Q}^{2} + \|\delta u_{i}\|_{R}^{2}$$
s.t. $\delta x_{i} = x_{i} - x_{ss}$

$$\delta u_{i} = u_{i} - u_{ss}$$

$$x_{i+1} = Ax_{i} + Bu_{i} + B_{w}w$$

$$u_{i} \in \mathbb{U}(v, \phi - i\omega_{q}T_{s})$$

Rotating/Scaling Feasible Set:

Implementation environment:

- 16-bit native fixed-point DSP BF-533 from Analog Devices (≈10\$)
- C code (integer arithmetic) + standard C-compiler

Main results:

Bound: 125 μs Solution Time: < 50 μs Memory: < 1kB Relative accuracy: < 1e-3

Example: Ball on Plate System

- Movable plate (0.66m x 0.66m)
- Can be revolved around two axis [+17°; -17°] by two DC motors
- Angle is measured by potentiometers
- Linearized dynamics: 4 states, 2 inputs
- Position of the ball is measured by a camera

Example: Ball on Plate System Cascaded Control Structure

Example: Ball on Plate System Controller comparison

Ball Control: PID vs. LQR vs. MPC Controller

Example: Ball on Plate System Controller comparison

Ball Control: LQR vs. MPC control with Input Constraints

(a) LQR (red) vs MPC Controller (blue)

(b) Input β for the upper left corner

Example: Ball on Plate System Video

Fast Gradient Toolbox

Fabian Ullmann, Stefan Richter and Colin Jones

- Matlab Toolbox for Real-time First Order Optimization
 - C-Code Generation
 - Real-time code generation for embedded platforms
 - First release autumn'11

Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

- within the real-time constraint.
- a feasible solution
- satisfying stability and performance criteria
- for any admissible initial state is found.

NOTE: Optimality not required

We present two methods for linear systems:

Setting Linear state and input 'Simple' input constraints

constraints (e.g. box constraints)

Time scale Milliseconds Microseconds

Idea Provide guarantees for any time Compute a priori bounds on the

constraint required online computation time

Approach Robust MPC with stability Fast gradient method

constraints

[M.N. Zeilinger et al., CDC 2009] [S. Richter et al., CDC 2009]

