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Real-time synthesis : Complexity as a specification

MPC problem Computational Embedded Real
method Processor timel

N-—1
J*(xg) = nile Vn(zn) + Z Iz;,u;)
‘ i=0
s.t. Tit+1 — f(x,,ul)
(mi,ui) e X xU
TN € XN

« Hardware platform bounds computation time and storage

» Current real-time explicit methods are limited to small problem dimensions
- Online MPC can be applied to all problem dimensions

This talk: Real-time online MPC for high-speed large-scale systems
—> Fast online optimization

- Satisfaction of real-time constraint
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Fast online optimization

Many methods available:

CVvX CVXMOD CVXGEN
Matlab Software for ~ Convex optimization Code Generation for
Disciplined Convex software in Python Convex Optimization
Programming http://cvxmod.net/ http://cvxgen.net/ CI poases
http://cvxr.com/cvx/ Online Active Set Strategy
http://www.kuleuven.be/
optec/software/qpOASES
O0QP
Object-oriented software QPSCth

for quadratic programming ,
http://pages.cs.wisc.edu/ A dual, active-set, Schur-complement
~swright/ooqp/ method for large-scale and structured
convex quadratic programming ...Mmany more

[Bartlett et al., ‘06]

Online optimization can be applied to control high-speed systems

No guarantees on system theoretic properties when applied to
MPC in a real-time setting.
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Example:
Effect of limited computation time

Unstable example

Closed loop trajectory: L+ (121 1
Optimal control law X" = 4

0 1 0.5
x| <5, -5<x<1
Ul <LN=5Q=/R=1

X 10_4
N SN
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w

Computation time [s]
N

—

5 10 15 20 25
Time Step

o

Closed loop trajectory:
Optimization stopped after 4 iterations
= max computation time of 21ms

Limited computation time - No stability properties
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Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

« within the real-time constraint

« afeasible solution NOTE: Optimality not required
« gatisfying stability and performance criteria

« for any admissible initial state

is found.

We present two methods for linear systems:

Setting Linear state and input ‘Simple’ input constraints
constraints (e.g. box constraints)

Time scale  Milliseconds Microseconds

ldea Provide guarantees for any time  Compute a priori bounds on the
constraint required online computation time

Approach Robust MPC with stability Fast gradient method

constraints
[M.N. Zeilinger et al., CDC 2009] [S. Richter et al., CDC 2009]
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Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

« within the real-time constraint

* a feasible solution NOTE: Optimality not required
« gatisfying stability and performance criteria

« for any admissible initial state

is found.

We present two methods for linear systems:

Setting Linear state and input
constraints

Time scale  Milliseconds

ldea Provide guarantees for any time
constraint

Approach Robust MPC with stability
constraints

[M.N. Zeilinger et al., CDC 2009]
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Example:
Stability under proposed real-time method

Unstable example

Closed loop trajectory: o [1.2 1] N [ 1 ]

Optimal control law Proposed real-time 0 1 0.5
MPC method x| <5, -5<x% <1

stopped after 4 | <1,N=5Q=IR=1

online iterations 4

-4
x 10

0 NIV AV
N~ N

w

Computation time [s]
- N

5 10 15 20 25
Time Step

o

Closed loop trajectory:
Optimization stopped after 4 iterations
= max computation time of 21ms

Real-time robust MPC : Nearly optimal and satisfies time constraints
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Optimal MPC scheme

D/xt = x1 &
Q -
S g
D/xg==x
Optimal
Ua\ — KZE5 xr3 .
Ts5 solution

T4

Online optimization

Common warm-start: Shifted sequence

u(x)=[, .., ty
J

Ugpie(X)=[Uy, ..., Upp, KXy
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Optimal MPC scheme

E> E> Optimal

solution

Online optimization

Optimal MPC:

* Recursively feasible

« Stabilizing

* Unknown computation time...
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Real-time MPC scheme — General idea

E> E> Suboptimal

solution

- Properties?

Online optimization
+ Early termination

General approach for real-time MPC:
« Use of warm-start method
» Exploitation of structure inherent in MPC problems

« Early termination of the online optimization
[Wang & Boyd 2008; Ferreau et al., 2008, Schofield, 2008; Cannon et al., 2007; .. Many more]
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Real-time MPC scheme - Current methods

E> E> Suboptimal

solution

- Properties?

Online optimization
+ Early termination

Suboptimal solution during online optimization steps

- can be infeasible

- can destabilize the system

- can cause steady-state offset
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Problem definition

MPC problem:
N—1

J(x) = min Vy(x,u) = ZXI-TQX,' + u! Ruj + X, Pxp
- =0

s.t.  Xii1 = Ax; + Bu,
CX,' + DL/,' < b
A tion: A | |
“ c X ssumption: .t; is a polytope,

but approach can be equivalently
X0 = X applied to ellipsoidal constraints.

|

Parametric Quadratic Program
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Two QP formulations

Vectorized notation:  x = [xJ, x{ x[1T, u=[uf, uf T

Formulation 1:
« The predicted states can be expressed as x = Ax + Bu
« The MPC problem can be written using only the optimization variable u
min  u’ Hyu
u

Matrices are dense
st. Ggu < fy+ Egx

Formulation 2:
« Optimize over sequence of states and inputs z = [x",u’]’:
* Introduce equality constraints relating the states and inputs:

min z' Hz
Z

st. Gz <f Matrices are sparse
Fz = Ex
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Problem definition

MPC problem:
N—1
J(x) = min Vy(x,u) = ZXI-TQX,' + u! Ruj + X, Pxp
- =0

s.t.  Xii1 = Ax; + Bu,
CX,' + DL/,' < b
A tion: A | |
“ c X ssumption: .t; is a polytope,

but approach can be equivalently
X0 = X applied to ellipsoidal constraints.

|

Parametric Quadratic Program:

-~

J*(x) =min z"Hz

s.t. Gz <d
\_ Fz = Ex )
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Current real-time MPC methods
- Loss of feasibility

In practice: System will be subject to disturbances

Consider uncertain system: xt=Ax+Bu+w
where w €)M is a bounded disturbance.

Problem: Disturbances cause loss of

feasibility of the warm-start & 217
solution 2
- Recovery of feasibility not Flro=z >
guaranteed in real-time
rs xr3

T4
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Current real-time MPC methods
- Loss of stability

Requirement for stability: Lyapunov function
- Use of MPC cost as Lyapunov function
- MPC cost has to decrease at every time step: Viy(x, u(x)) < Viv(Xorev, U(Xprev))

In a real-time approach this condition can be violated even when initializing with
the shifted sequence

Interior-point methods:
« Efficient optimization method for a wide range of optimization problems
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Background: Primal barrier interior-point method

Optimization problem:  min z" Hz
‘ Note: here QP, but general
st. Gz <d nonlinear program possible

Fz = Ex
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Background: Primal barrier interior-point method

Optimization problem:  min z" Hz

st. Gz <d
Fz = Ex
m
Barrier method: min z'Hz—u Z log(—G;z + d;) barrier term
‘ i=1 with barrier
st. Fz =Ex parameter >0

— Equality constrained problem
— Approximation improves as u — 0

[Boyd & Vandenberghe, 2004]
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Background: Primal barrier interior-point method

Optimization problem:  min z" Hz

st. Gz <d
Fz = Ex
m
Barrier method: min z'Hz—u Z log(—G;z + d;) barrier term
‘ i=1 with barrier
st. Fz =Ex parameter >0

— Solve augmented problem for decreasing values of
2> Z'(u) (central path)

— Convergence to the optimal solution of the
original optimization problem for u — 0

-~ _— -

[Boyd & Vandenberghe, 2004]
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Current real-time MPC methods
- Loss of stability

Requirement for stability: Lyapunov function
- Use of MPC cost as Lyapunov function
- MPC cost has to decrease at every time step: Viy(x, u) < Viy(Xorev, Uprev)

In a real-time approach this condition can be violated even when initializing with
the shifted sequence

Interior-point methods:
« Efficient optimization method for a wide range of optimization problems
« Minimize augmented cost

m
min z'Hz — “Z log(—G,z + d;)

Z .
=1

s.t. Fz =Ex

- Decrease in cost does not enforce a decrease in MPC cost z'H~

- Steady-state offset for u#0
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Proposed real-time MPC method

Real-time online MPC:

Guarantee that

« within the real-time constraint
« afeasible solution

» satisfying stability criteria

» for any admissible initial state
is found.
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Proposed real-time MPC method

Real-time online MPC:

Guarantee that

« within the real-time constraint < Early termination
» afeasible solution < Robust MPC

« satisfying stability criteria

« for any admissible initial state

Is found.

» Robust MPC method provides feasibility of the
warm-start solution by considering all possible
disturlbance sequences

« Use of primal feasible optimization method
provides feasibility of the suboptimal solution
obtained during online optimization
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Proposed real-time MPC method

Guarantee that

» within the real-time constraint < Early termination

» afeasible solution < Robust MPC

» satisfying stability criteria < Lyapunov constraint
» for any admissible initial state

is found.

Introduce ‘Lyapunov constraint’:
Enforces decrease in suboptimal MPC cost at each iteration

Viv(x, u) < Viy(Xprev, Uprev) OF 2" Hz < Z30,HZyey > Quadratic constraint

- (Input-to-state) Stability for any real-time constraint

- Convergence to desired steady state

Extension to reference tracking: Extend tracking approach in [Limon et al., 2008]

) AUTOMATIC CONTROL
LABORATORY



Real-time robust MPC - Fast implementation
Interior point optimization

« Standard Newton step computation:

Speed of optimization
V2.0 4+ uGTSs2¢ CT Az] _ [rd] & o
¢ 0] |Av "p Time to solve linear system

e Tracking formulation and Lyapunov constraint
- Modified Newton step matrix structure
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Real-time robust MPC - Fast implementation
Interior point optimization

« Standard Newton step computation:

Speed of optimization
V2.0 4+ uGTs2G¢ T Az] _ [rd] & =
¢ 0] |Av "p Time to solve linear system

e Tracking formulation and Lyapunov constraint
- Modified Newton step matrix structure
« Matrices can be transformed into arrow structure

- Solved as efficiently as standard MPC problems

» (Custom solver in C++ was developed
- Extending [Rao et al., 1998, Hansson, 2000 and Wang et al., 2008]
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Real-time robust MPC - Fast implementation
Interior point optimization

« Standard Newton step computation:

Speed of optimization
V2.0 4+ uGTs2G¢ T Az] _ [rd] & =
¢ 0] |Av "p Time to solve linear system

e Tracking formulation and Lyapunov constraint
- Modified Newton step matrix structure
« Matrices can be transformed into arrow structure
- Solved as efficiently as standard MPC problems
» (Custom solver in C++ was developed
- Extending [Rao et al., 1998, Hansson, 2000 and Wang et al., 2008]

—> Fast solution of tracking problem

- Guaranteed stability for time constraints!
- Computation times faster than methods with no guarantees
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Numerical examples

Oscillating masses example F o 1 T
e Problem: 12 states, 3 inputs

e Fast MPC with guarantees: horizon N=10

- Computation of 5 Newton steps in 2 msec
Comparison: CPLEX 26 msec, SEDUMI 252 msec
Closed loop performance loss in % for varying iteration numbers

lm 2 | 3| 4| 5] 6] 7| 8 >Optmal

A w 1.321.10 | 0.88 | 0.70 | 0.55 | 0.44 | 0.33 ~44 iterations

- 2.5kHz sampling rate with stability guarantee

Random example

e Problem: 30 states, 8 inputs, horizon N=10

- QCQP with 410 optimization variables and 1002 constraints
- Computation of 5 Newton steps in 10 msec
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Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

« within the real-time constraint

« afeasible solution

« gatisfying stability and performance criteria
« for any admissible initial state

is found.

We present two methods for linear systems:

Target ‘Simple’ input constraints
(e.g. box constraints)
Time scale Microseconds
|dea Compute a priori bounds on the
required online computation time
Approach Fast gradient method

[S. Richter et al., CDC 2009]
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Structured Optimization: Gradient Method for input
constrained MPC

« Fast gradient method
— Very simple
— Easy to parallelize

— Fast for large number of states
(using dense problem formulation)

/Require: Uo € UN, Vo = Uy 1 Work per iteration
1: for i =1 to iy, do * 1 matrix-vector product
2 Up=myn (Vi1 — $VIn(Vic1i @) + 2 vector sums
32 Vi=U;+ Bi(U;i — Ui—1) « 1 projection
4: end for
\_ J

min

Key result: Can compute a priori bound on required number of iterations i

[Y. Nesterov, 1983]
[S. Richter et al., CDC 2009]
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Fast Gradient Method : Time bound to e-optimality

« Solution with approximation error € in i, Steps:

> )

e K condition number
O measure of initial residual

Cold start:

6 < LR?/2 0 < 2max Jy(uws; X) — Jy(x)
xeXpy
*u, =0 * u,.: Warm start sequence
* R : radius of feasible set » Worst distance measured in
» Easy to compute terms of initial cost

* Hard to compute

[S. Richter et al., CDC 2009]
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Fast Gradient Method : Time bound to e-optimality

« Solution with approximation error € in i, Steps:

' In NOTE: Extension to state and
Imin Z 1 . t _t [ _t -bl .
In (1 _ E) input constraints possible using

Lagrangian relaxation
. [S. Richter et al., CDC 2011]
* K condition number
* 0 measure of initial residual

Cold start:

6 < LR?/2 0 < 2max Jy(uws; X) — Jy(x)
xeXpy
*u, =0 * u,.: Warm start sequence
* R : radius of feasible set » Worst distance measured in
» Easy to compute terms of initial cost

* Hard to compute

[S. Richter et al., CDC 2009]
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Example: Control of an AC-DC Power Converter

2-level 3-phase inverter:

g \
controlled [ inputs i
O (G (|
(
. 1 \ I
AL ifg, i i [ 1
o | Lfg ) w ! : e
r X @ DC source
I
: I
I
I
!

Control objectives: «  Track currents g1+ g g3
« Actively dampen CL filter dynamics

Model: Marginally stable system in d-q coordinates:

6 states / 2 inputs / 2 disturbances / 2 controlled outputs
[S. Richter et al., ACC 2010]
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Example: Control of an AC-DC Power Converter

MPC Tracking Problem: Rotating/Scaling Feasible Set:
N—1

(@) = min [16xnl3 + > +lI6xil3 + 6wl
=0 Us (v, &) Us(v, ¢ — wyT5) Us( 2,T})

S.t.0X = Xj — Xes
Ouj = Ui — Uss
Xi+1 = Ax; + Buj + By, w
up € U(v, ¢ — iwgTs)
Implementation environment:

. 16-bit native fixed-point DSP BF-533 from Analog Devices (=109)
. C code (integer arithmetic) + standard C-compiler

Main results:
ain resufts Bound.: 125 us

Solution Time: <50 us

Memory: < 1kB
Relative accuracy: < 1e-3

[S. Richter et al., ACC 2010]
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Example: Ball on Plate System

« Movable plate (0.66m x 0.66m)

« (Can be revolved around two axis
[+17°; -17°] by two DC motors

« Angle is measured by potentiometers
* Linearized dynamics: 4 states, 2 inputs

« Position of the ball is measured by a
camera

e~ %, Q0
3 Kgy
................. L.Rgr...
Bo
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Example: Ball on Plate System
Cascaded Control Structure

-0 o oo H+ [
X i U i X
o Outer P ler Inner M Motor/ phi Ball
Controller Controller Plate
(100Hz)

Inner Loop (1kHZz)

[Master thesis by R. Waldvogel, 2011]
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Example: Ball on Plate System
Controller comparison

« Ball Control: PID vs. LQR vs. MPC Controller

¥ - awis ]
¥ - avis fm]

x — axis [m]

x — axis [m]

z [ [T
x — axis [m]

(a) PID - Controller (b) LQR - Controller (¢c) MPC - Controller

[Master thesis by R. Waldvogel, 2011]
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Example: Ball on Plate System
Controller comparison

« Ball Control: LQR vs. MPC control with Input Constraints

0.05
D251 A : 004l 5
02l . —— _ — _:._.:...-,\‘ _ \I-I. | . |'-I
9 }‘ bl 0.03F il
I sampling | il
oo },;J time: 0.01s | g oo
= | - B
2 o . . z r L '].'u,
; | prediction 2 ° \
horizon: 20 |\ oo
-0af \\ 1 002t ; S . J
O &) NN 003}
02r IS = ——— sy o- _ o
25| \ | ooaf L [+23 ; -2.3 ] 1
—D.IZS —DfZ : —0.‘15 —0?1 —D.ICIS E) U.IUS DI.‘I D.I‘IS Df: 0.‘25 _0'051 175 é 275 é; 3‘_5 4
X — axis [m] time [s]
(a) LQR (red) vs MPC Controller (blue) (b) Input 3 for the upper left corner

[Master thesis by R. Waldvogel, 2011]
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Example: Ball on Plate System
Video

[Master thesis by R. Waldvogel, 2011]
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Fast Gradient Toolbox

\\f/ FiOrdOs

Fabian Ullmann, Stefan Richter and Colin Jones

« Matlab Toolbox for Real-time First Order Optimization
— C-Code Generation
— Real-time code generation for embedded platforms
— First release autumn’11
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Real-time online MPC: Goals

Real-time online MPC:

Guarantee that

« within the real-time constraint

« afeasible solution NOTE: Optimality not required
« gatisfying stability and performance criteria

« for any admissible initial state

is found.

We present two methods for linear systems:

Setting Linear state and input ‘Simple’ input constraints
constraints (e.g. box constraints)

Time scale  Milliseconds Microseconds

ldea Provide guarantees for any time  Compute a priori bounds on the
constraint required online computation time

Approach Robust MPC with stability Fast gradient method

constraints
[M.N. Zeilinger et al., CDC 2009] [S. Richter et al., CDC 2009]
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